

Achieve Compliance with Dam Buster Products

NOTE: All Dam Buster® products are protected by various Australian and International Patents.

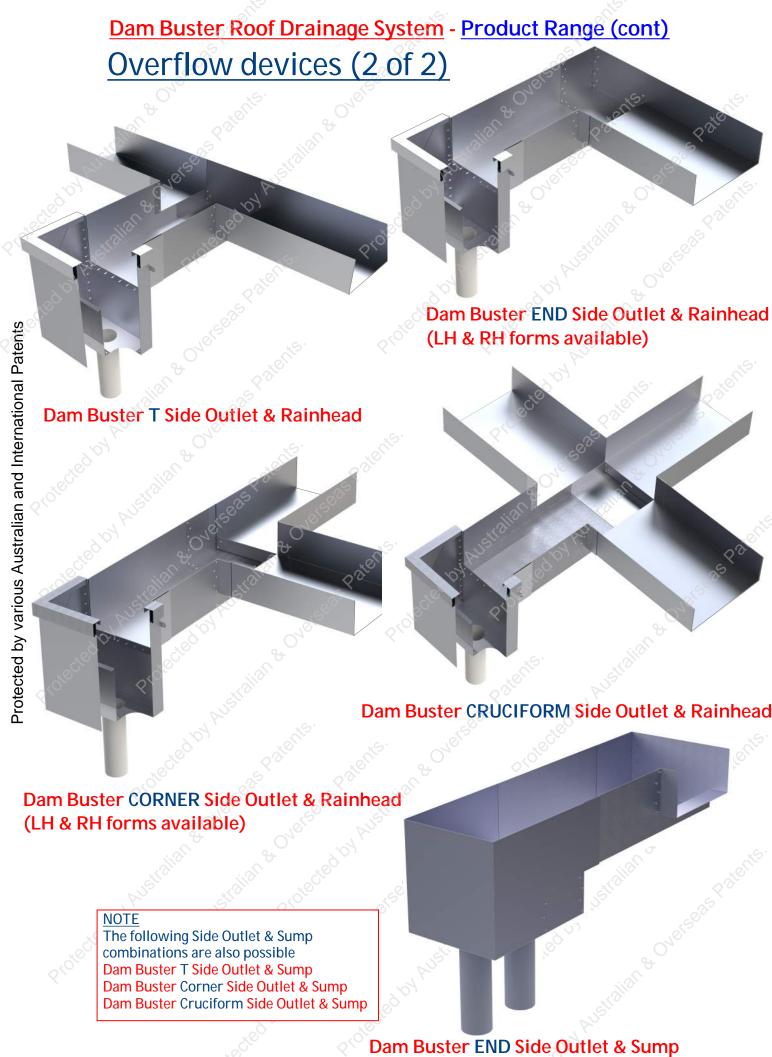
This document it to be read in conjunction with the Dam Buster publications titled 'Evidence of Suitability' and 'Installation Manual' and sets out the design requirements, as well as usage conditions and limitations for the use of Dam Buster's products.

PRODUCT TECHNICAL STATEMENT

Version 4.2 (9 June 2023)

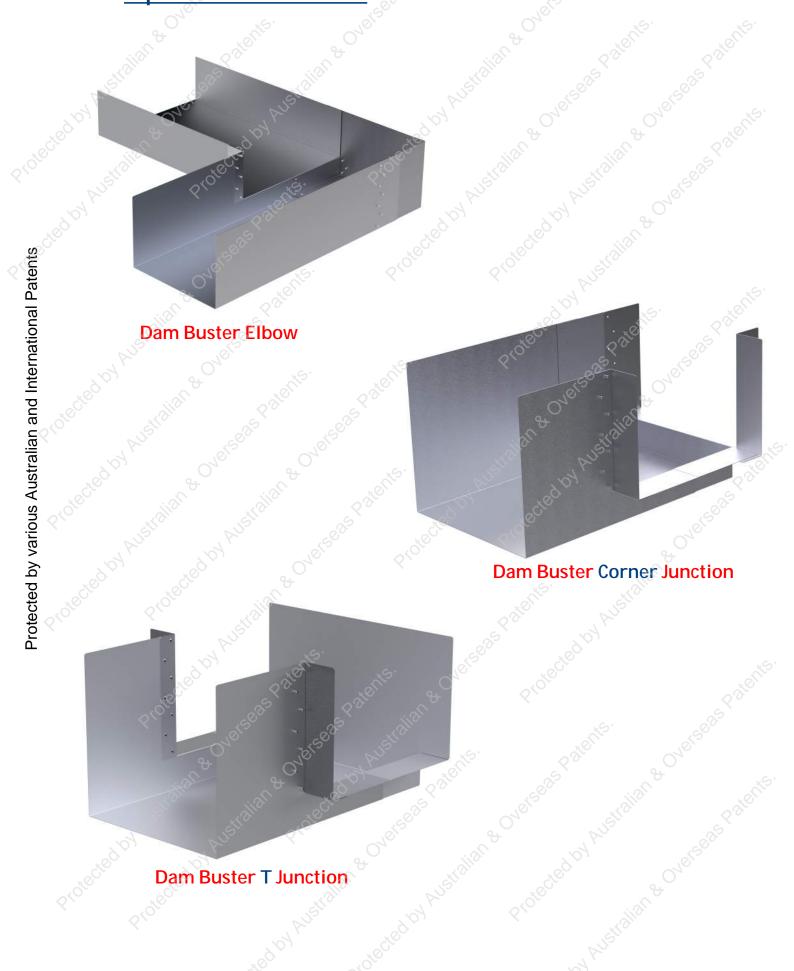
CERTIFIED PRODUCT (DAMBUSTER RAINHEAD)

For testing of the Overflow Performance of Dam Buster rectangular rainheads.



PRODUCT DESIGN HARDWARE AND BUILDING DAM BUSTER RAINHEAD

"The Architectural Choice"


<u>Dam Buster Roof Drainage System</u> - <u>Product Range</u> <u>Overflow devices (1 of 2)</u>

Dam Buster END Side Outlet & Sump (LH & RH forms available)

<u>Dam Buster Roof Drainage System</u> - <u>Product Range (cont)</u> <u>Upstream devices</u>

INDEX

Item	Description	Page(s)
1.	Product descriptions	6
2.	Application and intended use	6
3.	Compliance with the National Construction Code	6 - 8
4.	Limitations of use	8
5.	Conditions of use	8
6.	Instructions for Design	
	▲ – Box gutter(s) to a Dam Buster overflow device	9 – 13
	B - Dam Buster Elbow	14
	C - Dam Buster Junctions	15
7.	Instructions for Installation	16
8.	Risk Management (Design) & Maintenance of Box	16
	Gutter Systems	
9.	Intellectual Property and Know-How	17
10.	Support	17
11.	Appendices	17
	A - Dam Buster Product Names	18 – 19
	B - Design Example – Dam Buster Rainhead	20 – 21
	C - Dam Buster Standard drawing details	22 – 46
	D - Dam Buster Product Data Sheets	47 – 58
	■ - Risk Management & Maintenance of Box Gutter Systems	59 - 63
	F - Dam Buster Box Gutter Design Charts	64 – 68
	G – Aerial downpipe design chart	69 – 70

NOTE

Where this document refers to any code, guide or manual, this reference should be interpreted as being for the current legal version of the code, guide or manual for the relevant state or territory, unless noted otherwise.

1. PRODUCT DESCRIPTIONS

Dam Buster products are comprised of Zincalume, Colorbond or other approved metal materials suitable for use in domestic and/or commercial roof drainage systems.

Models:

- Box gutter overflow devices
 - o Dam Buster Rainhead
 - Overflow device comprising a Dam Buster Side Outlet and a Dam Buster Rainhead or a Dam Buster Sump
 - Dam Buster Sump, Continuous Sump and Back-to-Back Sump ('free flow' sumps)
- Ancillary products
 - Dam Buster Elbow
 - Dam Buster Junctions

2. APPLICATION AND INTENDED USE

The components which form the Dam Buster Roof Drainage System can be used in both domestic and commercial roof plumbing applications. Dam Buster products should only be specified by building design professionals and plumbers who have a good understanding of the relevant codes, and in particular, AS/NZS 3500.3. Dam Buster products should only be installed by licensed roof plumbers.

3. COMPLIANCE WITH THE NATIONAL CONSTRUCTION CODE

Roof drainage is treated slightly differently in different states in Australia. In all states other roof drainage falls under NCC Volumes 1 and 2 (i.e. the BCA), however, in Victoria and Tasmania (only), roof drainage <u>also</u> falls under NCC Volume 3 (i.e. the PCA) as <u>state additions</u>. Although there are different pathways through three volumes of NCC for roof drainage, in all cases it is necessary to comply with both the **Governing Requirements** and the relevant Performance Requirements (which differ, but are similar, between the BCA and the PCA). Note the Part A Governing Provisions of the NCC are the same for each volume.

Dam Buster adopts both the following Governing Provisions in relation to compliance:

- A2G3 Deemed-to-Satisfy Solution
- A2G4 A combination of solutions

3. COMPLIANCE WITH THE NATIONAL CONSTRUCTION CODE (continued)

All box gutters discharging to Dam Buster devices are designed for free flow in accordance with Appendix H, Figure H.1, of AS/NZS 3500.3, and are therefore Deemed-To-Satisfy Solutions. Note that box gutters designed in accordance with Figure H.1 are designed for 'free flow' between 3L/s and 16L/s. Note, extrapolation above or below these values is not permissible for a DtS Solution.

The Dam Buster Rainhead, when used in a conventional manner at the downstream end of a straight box gutter, is Deemed-to-Satisfy by Expert Judgment, in accordance with governing provision A2G3 (2) (b) Expert Judgement. However, if this is not acceptable to the state or territory Regulator, or the Building Surveyor / Certifier, then the Dam Buster rainhead, when used in a conventional manner, must be certified under a Performance Solution.

In general (except for the specified case noted above), the Dam Buster roof drainage system complies with the relevant Performance Requirements by using *A combination of solutions* i.e. A Deemed-To-Satisfy Solution and a Performance Solution, where:

- The box gutter(s) discharging to Dam Buster devices are Deemed-to-Satisfy Solutions
- The Dam Buster device itself is a Performance Solution.

Refer to Dam Buster's publication titled '*Dam Buster Products – Evidence of Suitability*' for a more detailed consideration of the above.

Together with the Dam Buster document titled 'Evidence of Suitability', this document complies with the following governing provisions of the NCC. For Performance Solutions, the following 'Evidence of Suitability' is provided.

A5G3 Evidence of Suitability – Volumes One and Two (BCA)

Part (1)(f) Another form of documentary evidence, such as but not limited to a *Product Technical Statement* ...

A5G4 Evidence of Suitability – Volume Three (PCA)

Part (6)(c) Any other form of documentary evidence ...

The Evidence of Suitability for the Rainhead, when used conventionally as a DTS solution, is provided under Governing Provisions clause A5G3(1)(e) and A5G4(6)(a). Refer to Dam Buster's Evidence of Suitability document for further details.

Note: Dam Buster products fall within the BCA (only) in all states and territories, except for Victoria and Tasmania, where they wall within both BCA and the PCA (due to additions to the PCA in these states). Consequently, it has been necessary for Dam Buster to comply with the NCC in a manner to simultaneously satisfy the differing requirements of the BCA and PCA.

4. LIMITATIONS OF USE

Dam Buster products are suitable for use with all building classes 1 to 10, regardless of height or size. The following limitations apply to Dam Buster Products:

- Dam Buster products must comply with the Instructions for Design in this document.
- Dam Buster products must be installed in accordance with the Dam Buster Installation Manual.
- In Victoria and Tasmania, roof plumbing must also comply with the current version of SA HB39 *Installation code for metal roof and wall cladding.*
- In Victoria, roof plumbing must also comply with HB114-1998.
- Dam Buster products must be installed by a building professional or roof plumber with a good understanding of AS/NZS 3500.3, and where applicable, SA HB39 and HB114.

5. CONDITIONS OF USE

The building contractor / plumber must only use Dam Buster products in accordance with this Product Technical Statement. Additionally, the installing plumber must ensure the type of material used provides adequate corrosion protection for the exposure classification. Further information can be obtained from the following BlueScope publications:

- Technical Bulletin 1A-Jan 2021, rev 13 'Steel roofing products selection guide.'
- Technical Bulletin 35-May 2019, rev 9 'Australian salt marine classifications.'

The installing plumber must also ensure compatibility of materials to prevent dissimilar metal corrosion.

More generally, the entire roof drainage installation must comply with all relevant requirements of AS/NZS 3500.3, SA HB39 (as applicable*) and SAA/SNZ HB114:1998 (as applicable*). * HB39 and HB114 are not applicable in all states and territories.

6. INSTRUCTIONS FOR DESIGN

A - BOX GUTTER(S) TO A DAM BUSTER OVERFLOW DEVICE

- i. Straight box gutters to Dam Buster Rainhead
- ii. Box gutter(s) to a Dam Buster Side Outlet & Rainhead combination
- iii. Box gutter(s) to a Dam Buster Side Outlet & Sump combination

Design procedure

Follow STEPS 1 to 4 below.

STEP 1 - Determine the design rainfall intensity for the location

Option 1

Australia

Select a 1% AEP (annual exceedance probability) design rainfall intensity for a time of concentration of 5 minutes for the location in accordance with Appendix D of AS/NZS 3500.3.

This value is referred to as 100I5

New Zealand

Select a 2% AEP design rainfall intensity for a time of concentration of 10 minutes for the location in accordance with Appendix E of AS/NZS 3500.3. This value is referred to as 50I₁₀.

Option 2 (for Australia only)

- a) Determine the longitude and latitude for the site
- b) Determine the 1% AEP design rainfall intensity for a 5 minute duration using the Bureau of Meteorology's IFD (Intensity-Frequency-Duration) website:-

http://www.bom.gov.au/water/designRainfalls/revised-ifd/

STEP 2 - Determine the roof catchment area and design flow rate for each box gutter associated with the Dam Buster device NOTE

Each Dam Buster device and its associated box gutter(s) should generally be designed one at a time for the roof drainage project, although the depths of box gutters will need to be rationalised to match as / where required.

For each box gutter discharging to a <u>Dam Buster Box Gutter Overflow</u> device

- a) Determine the roof catchment area in accordance with section 3.4 Catchment area of AS/NZS 3500.3
- b) Convert the catchment area to a flow rate in litres per second:

 $Q = \frac{CA \times Intensity}{3600}$

where

 $CA = catchment area (m^2).$

Q = the design flow rate in L/s

Intensity =100I5 or 50I10 mm/h per step 1

Notes

- 1) 1mm water depth over 1m² equates to 1 litre
- 2) The factor 3600 converts the rainfall intensity from L/hour to L/s

A - BOX GUTTER(S) TO A DAM BUSTER OVERFLOW DEVICE (cont.)

STEP 3 - Design each box gutter associated with the device

- a) Design each box gutter for 'free flow' in accordance with Appendix I, Figure H.1 of AS/NZS 3500.3 to determine the upstream depth. Note, it is recommended this value be rounded up to the nearest 5mm.
 - Refer to Appendix F for Dam Buster Box Gutter Design Charts.
- b) Determine the increase in depth of the box gutter over it length, based on its slope (which must be between 1 in 200 to 1 in 40), and round this value up to the nearest 5mm.
- c) Add the result in (b) to (a) to determine the design downstream box gutter depth (note, it is assumed the top of the box gutter is level, and the sides are tapered due to the fall).

NOTES

- Box gutters with design flow rates less than 3L/s must be designed for the minimum design flow rate of 3L/s.
- 2) Where there is more than one box gutter discharging to an overflow device comprising a Dam Buster Side Outlet and a Dam Buster Rainhead, the design flow rate is the sum of the actual design flow rates for each box gutter. For example, for a T Side Outlet, if the design flow rates of the two box gutters are 1.5 L/s and 2.0 L/s, both box gutters are designed for 3L/s, however, the rainhead is designed for 1.5 + 2.0= 3.5 L/s (not 6L/s).

STEP 4 - Design the Dam Buster device

Dam Buster Rainhead

Select the rainhead / downpipe combination from Table 1 below, such that the design flow rate is less than the allowable flow rate.

Overflow device comprising Dam Buster Side Outlet and a Dam Buster Rainhead

No design of the Side Outlet itself is required, provided

- (i) the Dam Buster Rainhead is selected as above and
- (ii) the Side Outlets are used within their allowable ranges i.e.
 - 200 Side Outlet expansion range is 200mm to 300mm (step= 50mm)
 - 300 Side Outlet expansion range is 300mm to 450mm (step= 60mm)
 - 400 Side Outlet expansion range is 400mm to 600mm (step= 70mm)

Overflow device comprising Dam Buster Side Outlet and a Dam Buster Sump

Apart from one exception noted below, no design of the Side Outlet itself is required, provided

- (i) the Dam Buster Sump is selected from Table 2 below,
- (ii) the Side Outlets are used within their allowable ranges i.e.
 - 200 Side Outlet expansion range is 200mm to 300mm (step= 50mm)
 - 300 Side Outlet expansion range is 300mm to 450mm (step= 60mm)
- 400 Side Outlet expansion range is 400mm to 600mm (step= 70mm)

EXCEPTION to Design Method

For the 200mm Dam Buster Side Outlet and Sump combination (only), the maximum flow rate is limited 5.0 L/s i.e. it is the lessor of the value in Table 2 and 5.0 L/s.

A - BOX GUTTER(S) TO A DAM BUSTER OVERFLOW DEVICE (cont.)

STEP 4 - Design the Dam Buster device (continued)

Dam Buster Sump

Select the sump / downpipe combination from Table 2 below, such that the design flow rate is less than the allowable flow rate.

Design the aerial overflow pipe. Refer to Appendix G for a design chart.

Dam Buster Continuous Sump

The Dam Buster Continuous Sump provides an attractive alternative to the AS/NZS 3500.3 DtS Sump / High Capacity Overflow device ('HCO'). This device is designed in the exactly the same way as the Dam Buster Sump. The flow occurs in one direction only, and when this device is located on building grids, one device may be eliminated, as there is no device at the first upstream end.

Dam Buster Back-to-Back Sump

The Dam Buster Back-to-Back Sump is effectively a double Sump, and provides has double the capacity of the Dam Buster Sump, provided the aerial overflow pipe is designed for the total flow in both sumps. The Back-to-Back Sump provides a very high hydraulic capacity and significantly exceeds the hydraulic capacity of the HCO for a similar sump depth.

A - BOX GUTTER(S) TO A DAM BUSTER OVERFLOW DEVICE (cont.)

Downpipe	Equivalent		Dam Bust	er Rainh	ead size ⁽¹)
size	diameter	R-200	(R-300)	R-400	R-500	R-600
100 x 50	79	4.00(2)				
80 diam.	80	4.00(2)			Refer note (i	v)
90 diam.	90	4.70	6.50			
100 x 75	97	5.00	7.30	8.00		
100 diam.	100	5.00	7.60	8.80	8.80	
100 x 100	112		8.80	12.0	12.0	
125 diam.	125		9.50	14.2	15.4	15.9
150 x 100	137	Refer no	to (v)	15.8	16.0	16.0
150 diam.	150	Kelei ilo	ite (v)	16.0	16.0	16.0
Overflow Capacity of		>16.0	>16.0	>16.0	>16.0	>16.0
Device (L/s)		D h				

(1) Curved fronted rainheads CR-xxx have the same capacity as rectangular rainheads (2) Capacities determined by testing by the AHSCA Research Foundation

Maximum permissible flow rates (litres / sec)

NOTES

- (i) Values in black have been determined in accordance with AS/NZS 3500.3
- (ii) Values in red were determined by testing by the AHSCA Research Foundation
- (iii) Values in blue were also determined by testing by the AHSCA Research Foundation. Note, AS/NZS 3500.3 permits the use of a 100x50 DP, however, no design charts are provided within the standard for this downpipe size, and consequently testing was required.
- (iv) For the R-400, R-500 & R-600, smaller downpipes than noted in the table may be used, provided the maximum permissible capacity is adopted as that for the next lowest rainhead size for which a value in the table is provided, for the same DP size. For example, for a 600 Rainhead, and 90 mm diam. DP, the maximum flow rate is 6.50 L/s.
- (v) These combinations are not possible
- (vi) Rectangular downpipes are considered to be 98% as effective as circular downpipes. Hence the equivalent diameter is based on 0.98 times the area of the rectangular downpipe.

TABLE 1 – Dam Buster Rainhead

A - BOX GUTTER(S) TO A DAM BUSTER OVERFLOW DEVICE (cont.)

Normal	Overflow	Sump	Dam Buster Sump width (mm)				
downpipe size	Downpipe size	Depth (mm)	200	300	400	500	600
90 diam.	90 diam.	100	2.85				
" "	" "	125	(3.20)			Refer No	to 2
" "	" "	150	3.60			Relei No	le o
90 diam.	100 diam.	100	3.40	(3.40)			
" "	" "	125	(4.60)	4.60			
" "	" "	150	5.05	(5.05)	5.05		
" "	" "	200	(5.90)	5.90	5.90		
100 diam.	100 diam.	125	(5.70)	5.70	(5.70)		
" "	" "	150	6.25	(6.25)	6.25	6.25	6.25
"	" "	200		7.30	7.30	7.30	7.30
150 diam.	150 diam.	150	Refer N	loto 4	12.2	12.2	12.2
" "	" "	200	Kelei i	1016 4	16.0	16.0	16.0

Maximum permissible flow rates (litres / sec)

Notes

- 1) denotes sump size not currently available as a standard size. Refer to available standard sizes in table below.
- 2) There is one exception to the table above. When used in conjunction with a Side Outlet, the maximum flow rate in the 200 Dam Buster Sump should be limited to 5.0 L/s.
- 3) Aerial overflow downpipes must be designed and installed at adequate grade to achieve the required flow rates. The minimum grades for critical flow rates specified in the design table (for PVC pipes) are provided in the table below for information purposes. These values have been determined from standard calculators based on the Colebrook-White equation.

Pipe size	Flow rate	Min grade
90 diam	3.60	1 in 200
" " "	4.60	1 in 150
100 diam	5.50	1 in 200
" " "	7.30	1 in 120
150 diam	16.0	1 in 200

Refer also Appendix F for an Aerial downpipe design chart.

- 4) These combinations may be used, however, provided the maximum flow rates stated for the same DP combinations in the same row of the table are adopted.
- 5) These combinations are not possible.
- 6) **IMPORTANT** AERIAL OVERFLOW PIPES MUST DISCHARGE VISIBLY TO ATMOSPHERE IN ORDER TO ALERT THE BUILDING MANAGER / BUILDING OWNER / BUILDING OCCUPANT THERE IS A BLOCKAGE IN THE SYSTEM.

	Dam Buster sump standard sizes					
Width Depth	200 mm	300 mm	400 mm	500 mm	600 mm	
100 mm	SU-200-100					
125 mm		SU-300-125				
150 mm	SU-200-150		SU-400-150	SU-500-150	SU-600-150	
200 mm		SU-300-200	SU-400-200	SU-500-200	SU-600-200	

B - DAM BUSTER ELBOW

Design procedure

- a) Repeat Steps 1 & 2 on page 8
- b) Determine the total flow rate in the Upstream and Downstream box gutters, and check that this is less than the maximum allowable flow rate in Table 3
- c) Design the Upstream box gutter for the total flow rate noted above in accordance with AS/NZS 3500.3, Appendix H, Figure H.1
- d) Note, there is no need to design the Downstream box gutter due to the increase in depth due to the Step-Down in the Elbow

Device Size	Maximum Flow Rate (L/s)	Contraction Range for Upstream Gutter	Maximum box gutter depth at Entry (mm)	Drop within Elbow (mm)	Maximum box gutter depth at Exit (mm)
ELB-200	5.0	200	180	50	230
ELB-300	9.5	300 -> 200	215	60	265
ELB-400	16.0	400 -> 300	230	70	300
ELB-500	16.0	500 -> 300	230	70	300
ELB-600	16.0	600 -> 400	230	70	300

NOTES

- 1. The upstream box gutter is designed (in accordance with figure H.1 of AS/NZS 3500.3) for a flow rate equivalent to the total catchment area of the upstream and downstream box gutters. It is not necessary to design the downstream box gutter.
- 2. The top of the upstream box gutter, the Elbow, and the downstream box gutter must all be level. Hence the upstream depth of the downstream gutter is equal to the downstream depth of the upstream gutter, plus the drop (and small amount fall within the Elbow itself).
- 3. The Elbow is trimmed to match the designed downstream depth of the upstream box gutter. Refer to the Installation Manual.
- 4. All Elbows are supplied as 'Sliding' Elbows (i.e. supplied in two-piece / adjustable) by default. Sliding Elbows are able to contract for the upstream box gutter width within the specified range (all sizes except 200)
- 5. 'Fixed' Elbows are also for special larger volume orders (over 20 units), however fixed Elbows are not adjustable for the upstream box gutter.
- 6. ONLY THE UPSTREAM BOX GUTTER MAY BE CONTRACTED. THE DOWNSTREAM BOX GUTTER MAY NOT BE NARROWER THAN THE UPSTREAM BOX GUTTER.

TABLE 3 – Dam Buster Elbow

C - DAM BUSTER JUNCTIONS

Design procedure

- a) Repeat Steps 1 & 2 on page 8.
- b) Determine the total flow rate in the Upstream and Downstream box gutters, and check that this is less than the maximum allowable flow rate in Table 4
- c) Design the Upstream box gutter having the greater catchment area (the 'critical' upstream box gutter) for the flow rate to this box gutter, plus the flow rate to the downstream box gutter, in accordance with AS/NZS 3500.3, Appendix H, Figure H.1.
- d) The other Upstream box gutter having the lower catchment area (i.e. the 'non-critical' box gutter) is then sized to match the 'critical' box gutter at the entry to the Junction.
- e) Note, there is no need to design the Downstream box gutter due to the increase in depth due to the Step-Down in the Junction

Device Size	Maximum Design Flow Rate (L/s)	Contraction Range for Upstream Gutter	Maximum box gutter depth at Entry (mm)	Drop within Junction (mm)	Maximum box gutter depth at Exit (mm)
JUN-200	5.0	200	180	50	230
JUN-300	9.5	300 -> 200	215	60	265
JUN-400	16.0	400 -> 300	230	70	300

NOTES

- 1. The maximum box gutter depth at Entry to the device is the maximum allowable downstream depth of the 'critical upstream box gutter' (refer note 3).
- 2. The Junction is trimmed to match the design downstream depth of the 'critical upstream box gutter'. Refer to the Installation Manual.
- 3. The upstream box gutter with the larger catchment area (the 'critical upstream box gutter') only is designed, and the opposite upstream box gutter ('non-critical box gutter') is sized to match the 'critical box gutter'. It is not necessary to design the downstream box gutter.
- 4. The 'critical box gutter' is designed (in accordance with figure H.1 of AS/NZS 3500.3) for the the catchment area to this gutter, plus any additional catchment area flowing directly into the downstream box gutter.
- 5. The total flow rate in all gutters must not exceed the Maximum Design Flow rate in the table.
- 6. All Junctions are supplied as 'Sliding' Junctions (i.e. supplied in two-piece / adjustable) by default. Sliding Junctions are able to contract for the upstream box gutter width within the specified range (all sizes except 200)
- 7. 'Fixed' Junctions are also for special larger volume orders (over 20 units), however fixed Junctions are not adjustable for the upstream box gutter.
- 8. ONLY THE UPSTREAM BOX GUTTERS MAY BE CONTRACTED. THE DOWNSTREAM BOX GUTTER MAY NOT BE NARROWER THAN THE UPSTREAM BOX GUTTERS.

7. INSTRUCTIONS FOR INSTALLATION

Dam Buster products must be installed in accordance with the Dam Buster Installation Manual. Additionally, roof drainage installations should comply with Section 4 of AS/NZS 3500.3 'Roof drainage systems – Installation'. It is the licensed roof plumber's responsibility to certify all works associated with the installation of the box gutters and Dam Buster devices in accordance with the specific requirements of that State or Territory.

Overflow pipes to the Dam Buster Sump must discharge visibly to atmosphere, in order to alert the building owner / occupant to a blockage. Where possible, the Dam Buster Sump should also be fitted with a 90mm diameter 'Full Blockage Overflow Indicator', as shown on the standard detail sheets. This overflow indicator is supplied by the installing plumber typically fitted on the end wall of the sump but may also be fitted on a side wall (so long as the centreline of the pipe is level with the sole of the box gutter). There may be situations where it is not possible or desirable to incorporate the Full Blockage Overflow Indicator, and the building designer and plumber should consider this on a case by case basis. Note, that the Dam Buster Sump has a similar safeguard with regards to blockage as the DTS Sump / High Capacity overflow device, and the Full Blockage Overflow indicator is recommended for additional safety.

It should be noted that the safest overflow device is the Dam Buster Rainhead (or a fully compliant DTS rainhead), followed by the DTS Sump and Side Overflow and finally the Dam Buster Sump or DTS Sump / High Capacity overflow.

8. RISK MANAGEMENT (DESIGN) & MAINTENANCE OF BOX GUTTER SYSTEMS

The are numerous ways in which the risk of failure of box gutter systems can be minimized. Refer to Appendix E for a discussion on Risk Management (Design).

Regular maintenance of box gutter systems is essential to ensure they continue to function as intended. The frequency of maintenance required will depend on the presence and type of nearby vegetation, and other factors such as prevailing wind directions and vulnerability to debris, rubbish, nesting material etc. For example, more regular maintenance may be required for school buildings, where balls may block downpipes. Refer also Appendix E for further discussion on the maintenance of box gutter systems.

9. INTELLECTUAL PROPERTY AND KNOW-HOW

Dam Buster is a registered Trademark both in Australia and Overseas, and all Dam Buster products are also protected by a comprehensive range of Australian and Overseas patents. Breaches of Intellectual Property and Know-How rights are serious and will be pursued by Dam Buster Pty Ltd / Dam Buster IP Pty Ltd against any infringers.

With the exception of the AHSCA-RF Overflow Performance Certificates, Dam Buster has chosen not to make testing data which supports compliance of the Dam Buster products publicly available, due to the documents and information being considered to be 'Trade Secrets'.

10. SUPPORT

Refer to Dam Buster's website www.dambuster.com.au

11. APPENDICES

Appendix	Description
A	Dam Buster Products Names
В	Design Example – Dam Buster Rainhead
С	Dam Buster Standard drawing details
D	Dam Buster Product Data Sheets
E	Risk Management (Design) & Maintenance of Box Gutter Systems
F	Box Gutter Design Charts
G	Aerial Downpipe Design Chart

Appendix A

Dam Buster Product Names

Dam Buster Product Names

Label	Name	Sizes				
		Ra	inheads			
R-www	Rainhead	R-200	R-300*	R-400	R-500	R-600
CR-www	Curved Rainhead	CR-200	CR-300	CR-400	CR-500	CR-600
R-www-F	Flat Back Rainhead	R-200-F	R-300-F	R-400-F	R-500-F	R-600-F
CR-www-F	Flat Back Curved Rainhead	RC-200-F	RC-300-F	RC-400-F	CR-500-F	CR-600-F
			Sumps			
SU-www-ddd	Sump	SU-200-100	SU-300-125	SU-400-150	SU-500-150	SU-600-150
		SU-200-150	SU-300-200	SU-400-200	SU-500-200	SU-600-200
		Sid	e Outlets			
TSO-www	T Side Outlet	TSO-200	TSO-300	TSO-400	n/a	n/a
ESO-www-L	End Side Outlet, LH	ESO-200-L	ESO-300-L	ESO-400-L	n/a	n/a
ESO-www-R	End Side Outlet, RH	ESO-200-R	ESO-300-R	ESO-400-R	n/a	n/a
CSO-www-L	Corner Side Outlet, LH	CSO-200-L	CSO-300-L	CSO-400-L	n/a	n/a
CSO-www-R	Corner Side Outlet, RH	CSO-200-R	CSO-300-R	CSO-400-R	n/a	n/a
XSO-www	Cruciform Side Outlet	XSO-200	XSO-300	XSO-400	n/a	n/a
			Elbows			
ELB-www-L	Elbow, LH	ELB-200-L	ELB-300-L	ELB-400-L	ELB-500-L	ELB-600-L
ELB-www-R	Elbow, RH	ELB-200-R	ELB-300-R	ELB-400-R	ELB-500-R	ELB-600-R
	Junctions					
TJN-www	Tee Junction	TJN-200	TJN-300	TJN-400	n/a	n/a
CJN-www-L	Corner Junction, LH	CJN-200-L	CJN-300-L	CJN-400-L	n/a	n/a
CJN-www-R	Corner Junction, RH	CJN-200-R	CJN-300-R	CJN-400-R	n/a	n/a
		Ancilla	ary Products			
CL-www	Chute Lid	CL-200	CL-300	CL-400	CL-500	CL-600

NOTES

- 1. The R-300 is also available in a number of (non-standard) widths between up to 480mm wide, in a 'stretched' form such that the width of the rainhead (and box gutter receiver) in increased, but all other dimensions remained the same. The 'stretched' rainheads currently available are R-300-350, R-300-380, R-300-400, R-300-450 & R-300-500. Refer also to the Product Data Sheets. Other 'non-standard' sizes may become available in the future, however Custom rainhead sizes are also available, contact Dam Buster for further information.
- 2. All Side Outlets and Elbows are supplied as 'Sliding' (i.e. two-piece / adjustable). However, these products can also be supplied as 'Fixed' (i.e. one-piece) for special larger volume orders (over 20 units).

Appendix B

Design Example - Dam Buster Rainhead

Roof Drainage Design & Rainhead Selection Example

COMBINATION OF

Deemed-to-Satisfy ('DtS')

Dts Solution

>25m.

125mm

Upstream depth

SOLUTIONS =

Solution + **Performance** Solution

4.Om

В

CERTIFIED PRODUCT (DAM BUSTER RAINHEAD)

For testing of the Overflow Performance of Dam Buster rectangular rainheads.

Capital City ARIS				
Location	1% AEP			
Location	mm / h			
Brisbane	306			
Darwin	274			
Sydney	262			
Canberra	192			
Melbourne	187			
Adelaide	174			
Perth	172			
Hobart	120			

Note

Refer to AS/NZS 3500.3-2021 for all other areas

7.25m.

Capital City ADIc

DtS Solution Step 1 - Determine the design rainfall intensity Adopt the design rainfall intensity, 1%AEP, for Melbourne of 187mm/h.

DtS Solution (cont.)

Step 2 - Determine the roof catchment area ('CA') and design flow rate

Catchment Area = plan area +

(1/2) x net vertical area

Roof A

Roof area 'A' = 7.0 x 4.0 = 28.0m² Catchment area = 'A' x F⁽¹⁾

= 28 x 1.04= 29.1m²

Wall area 'B' = $7.0 \times 4.0 = 28.0 \text{m}^2$ Catchment Area = $1/2 \times 28.0 = 14.0 \text{m}^2$

Roofs C & D

Roof area = $2 \times 7 \times 7.25 = 101.5 \text{m}^2$ Catchment Area = 101.5m²

Total Catchment Area = 144.6m²

 $Q = (CA \times 1\% AEP) / 3600$

 $= (144.6 \times 187) / 3600$

= 7.51 litres / sec

Performance Dam Buster Solution R-300 Rainhead with 100 mm Ø Downpipe (7.6 L/s)

2 dea

175mm

Downstream

depth

The vertical catchment component of the lower roofs, which have the same area, and having equally opposing slopes, cancel each other

300mm wide

2 deg

box gutter

300 wide box gutter, 1:150 fall, minimum depth designed in accordance with Figure H.1 of AS/NZS 3500.3

CALCULATIONS - NOTE

Steps 1 to 3 are calculations required in relation to the DtS component of the 'Combination of Solutions'.

Step 4, which is a Selection process only (highlighted in yellow), represents the Performance Solution component.

Step 3 - Design the (300mm W) box gutter ('BG')

From Figure H.1 of AS/NZS 3500.3, a slope of 1 in 150⁽²⁾, and a flow rate of 7.51 L/s, the design upstream BG depth is 122mm (rounded to 125mm) (OR refer to Appendix F of the Product Technical Statement for BG design charts). The fall over 7.0m is 7000/150=47mm (rounded to 50mm).

DtS Solution (cont.)

300mm wide x (125 min to 175 max) deep BG

Step (1) & (2) notes

- (1) Refer to Table 3.4.3.2 of AS/NZS 3500.3-2021 for the factor 'F'. This factor depends on the roof slope, and takes into account the extra catchment area for the roof due to the slope i.e. half the projected vertical area of the sloping roof.
 - Note, 'F' can also be calculated: $F = 1.0 + 0.5 \times tan$ (slope) (a scientific calculator is required to calculate F)
- (2) Dam Buster recommends a minimum fall of 1 in 150 to allow for possible minor future building movements, particularly on reactive clay sites.

Performance Solution

Step 4 - Select the rainhead & DP combination

Referring to Table 1, select a Dam Buster R-300 Rainhead with a 100mm diameter downpipe. Q(allowable) = 7.6 L/s > 7.51 L/s => OK

The rainhead may be either a R-300 or CR-300 Refer also Appendix A of the Product Technical Statement, 'Product Names'.

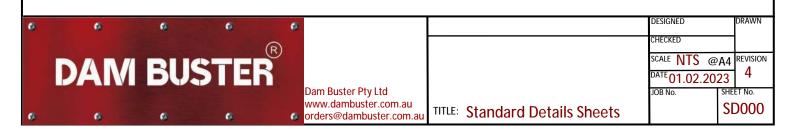
Dam Buster Rainhead Design Table

Downpipe	Equivalent	[Equivalent Dam Buster Rainhead size ⁽¹⁾			
size	diameter	R-200	R-300	R-400	R-500	R-600
100 x 50	79	4.00(2)		_		
80 diam.	80	4.00(2)			Not recomme	
90 diam.	90	4.70	6.50		or not possib	ole
100 x 75	97	5.00	7.30	8.00		
100 diam.	100	5.00	7.60	8.80	8.80	
100 x 100	112		8.80	12.0	12.0	
125 diam.	125		9.50	14.2	15.4	15.9
150 x 100	137			15.8	16.0	16.0
150 diam.	150			16.0	16.0	16.0
Overflow Capacity of Device (L/s)		>16.0	>16.0	>16.0	>16.0	>16.0

(1) Curved fronted rainheads CR-xxx have the same capacity as rectangular rainheads (2) Capacities determined by testing by the AHSCA Research Foundation

Appendix C

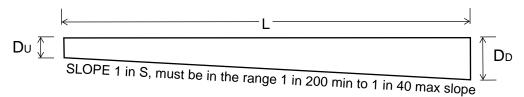
Dam Buster Standard drawing details


NOTE

All Dam Buster products are protected by various Australian and International Patents.
Refer to www.dambuster.com.au to order, and for the following documents:

- Product Technical Statement
- Evidence of Suitability
- Installation Manual

Sheet	Title
Number	
SD001	Typical box gutter discharging to a Dam Buster overflow device
SD002	Typical Dam Buster Rainhead
SD003	Typical Dam Buster Rainhead – Long & deep box gutter
SD004	Typical Overflow Device comprising a
	Dam Buster Rainhead and a Dam Buster Side Outlet
SD004A	Section XX through Side Outlet
SD005	Dam Buster T Side Outlet & Rainhead combination
SD006	Dam Buster End Side Outlet & Rainhead combination
SD007	Dam Buster Corner Side Outlet & Rainhead combination
SD008	Dam Buster Cruciform Side Outlet & Rainhead combination
SD009	Dam Buster T Side Outlet & Sump combination
SD010	Dam Buster End Side Outlet & Sump combination
SD011	Dam Buster Corner Side Outlet & Sump combination
SD012	Dam Buster Cruciform Side Outlet & Sump combination
SD013	Typical Dam Buster Sump
SD014	Typical Dam Buster Continuous Sump
SD015	Typical Dam Buster Continuous Sump with optional expansion joint
SD015A	Section X-X. SD011 – Detail WITHOUT expansion joint
SD015B	Section X-X, SD011 – Detail WITH expansion joint
SD016	Dam Buster Sump used in lieu of rainhead – Option A
SD017	Dam Buster Sump used in lieu of rainhead – Option B
SD018	Dam Buster Elbow
SD019	Dam Buster Tee Junction
SD020	Dam Buster Corner Junction


List of Dam Buster Standard Details

NOTE

All Dam Buster[®] products are protected by various Australian and International Patents.
Refer to www.dambuster.com.au to order, and for the following documents:

- Product Technical Statement
- Evidence of Suitability
- Installation Manual

Typical box gutter profile

Box gutter sizes are specified as:

WBG mm Wide x (Du MIN to DD MAX) mm Deep, where:-

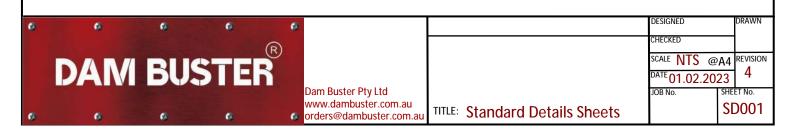
WBG = the box gutter width

L = the box gutter length

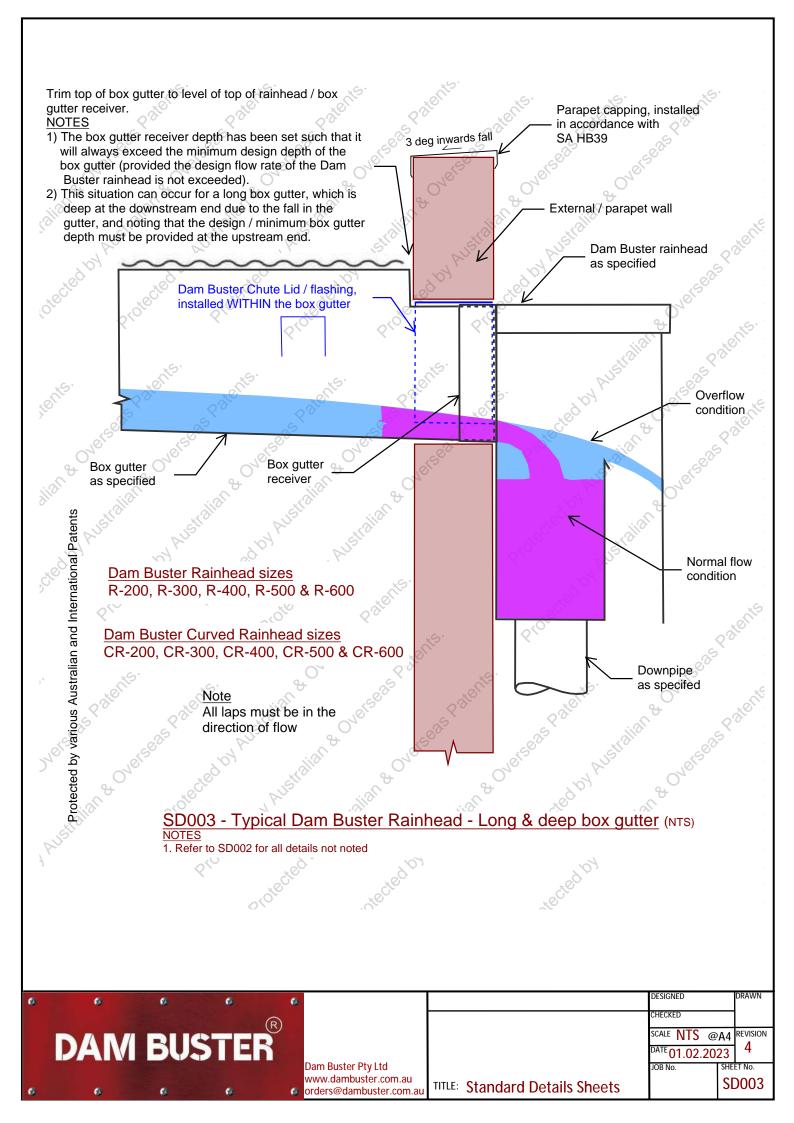
S = slope (1 in S)

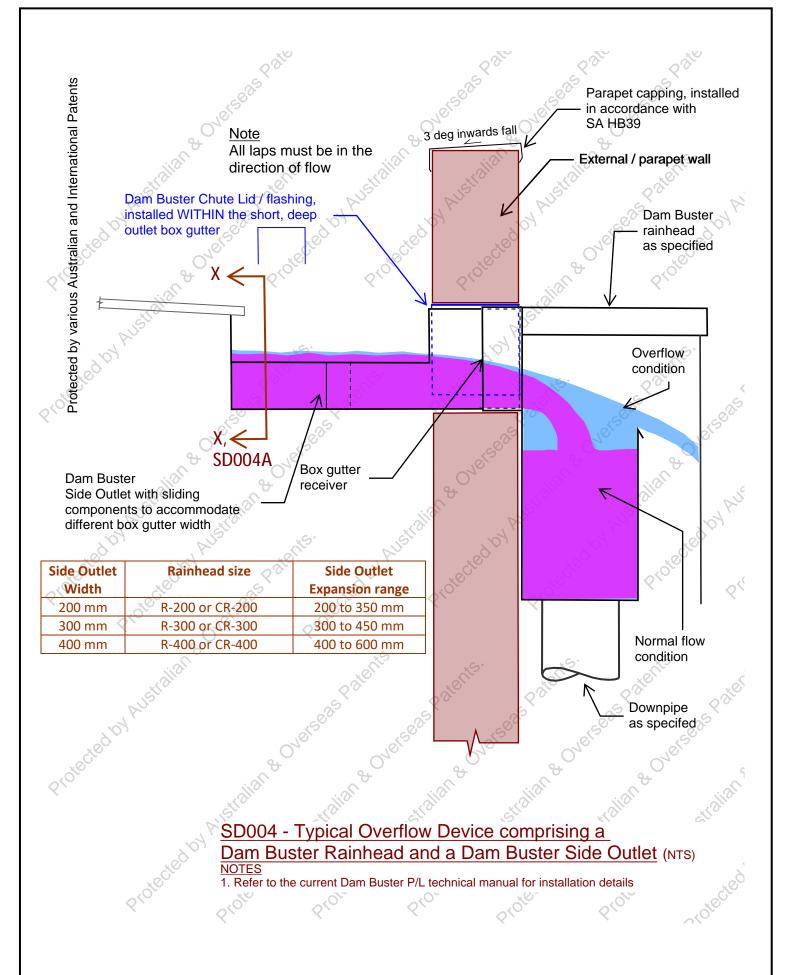
D∪ = depth at the upstream end

 minimum design box gutter depth to AS/NZS 3500.3, (rounded up to nearest 5 mm)

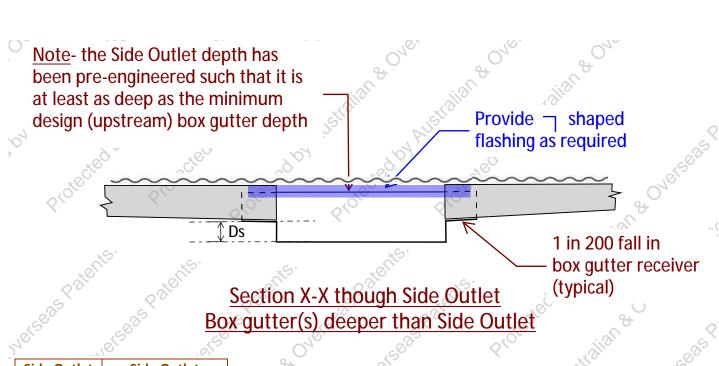

DD = depth at the downstream end

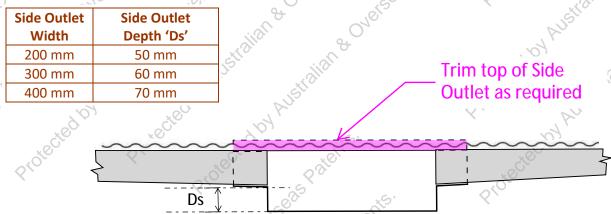
= the maximum box gutter depth, calculated asD∪ + L / S (also rounded up to the nearest 5 mm)

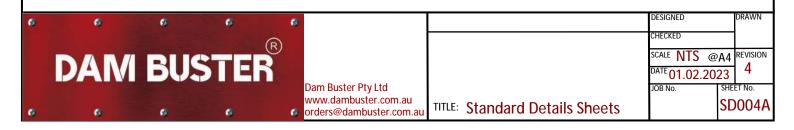

NOTES

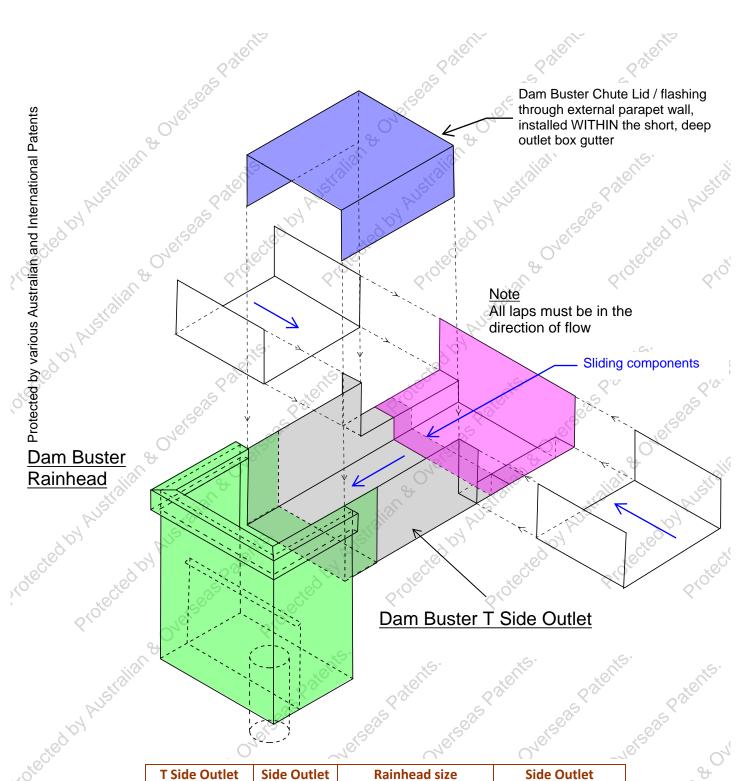

- 1) All Dam Buster box gutters should be designed for a minimum flow rate of 3L/s and a maximum flow rate of 16L/s
- 2) Where the Engineer's drawings specify the upstream and downstream depths, these values take precedence (however, the slope must be within the range 1 in 200 min to 1 in 40 max).
- 3) Roof plumber to check box gutter length on site, and confirm the downstream depth, Dp provides the required / design slope.
- 4) The roof plumber may increase the downstream depth, DD as necessary, however, the minimum depth at the upstream end, DU, cannot be reduced (and the fall must not exceed 1 in 40).
- 5) For buildings constructed in reactive clay soils, consideration should be given to increasing the box gutter slope in order to allow for potential building movements due to differential changes in foundation soil moisture contents. <u>Dam Buster recommends a minimum slope of 1 in 150 for reactive clay sites.</u>

SD001 - Typical box gutter discharging to a Dam Buster overflow device (NTS)



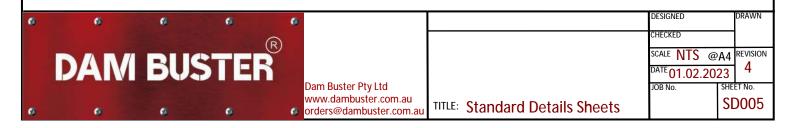


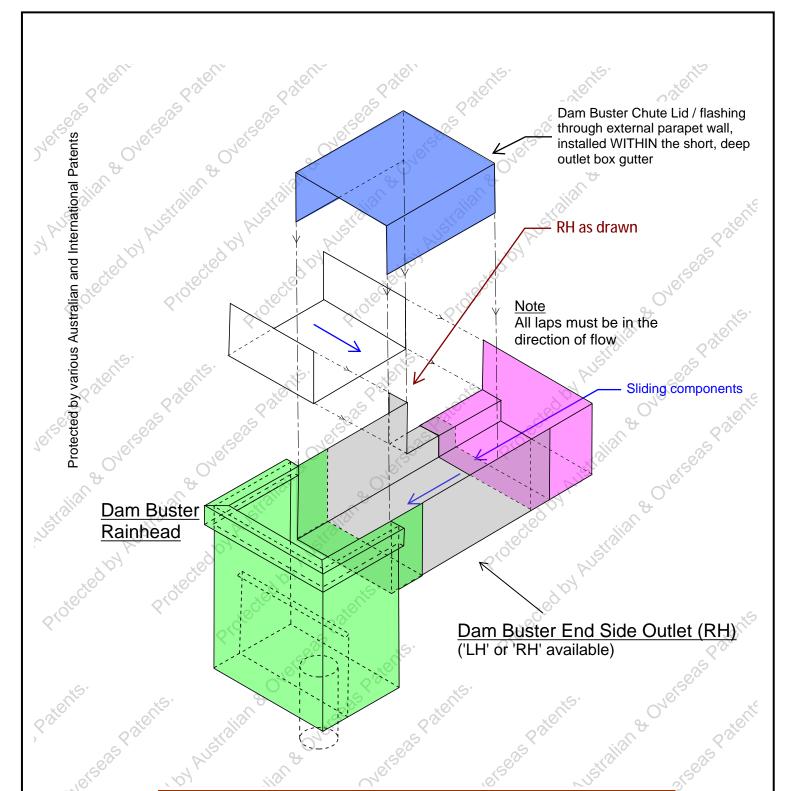



Section X-X though Side Outlet
Side Outlet deeper than Box gutter(s)

SD004A - Typical Overflow Device comprising a

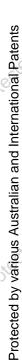
Dam Buster Rainhead and a Dam Buster Side Outlet (NTS)

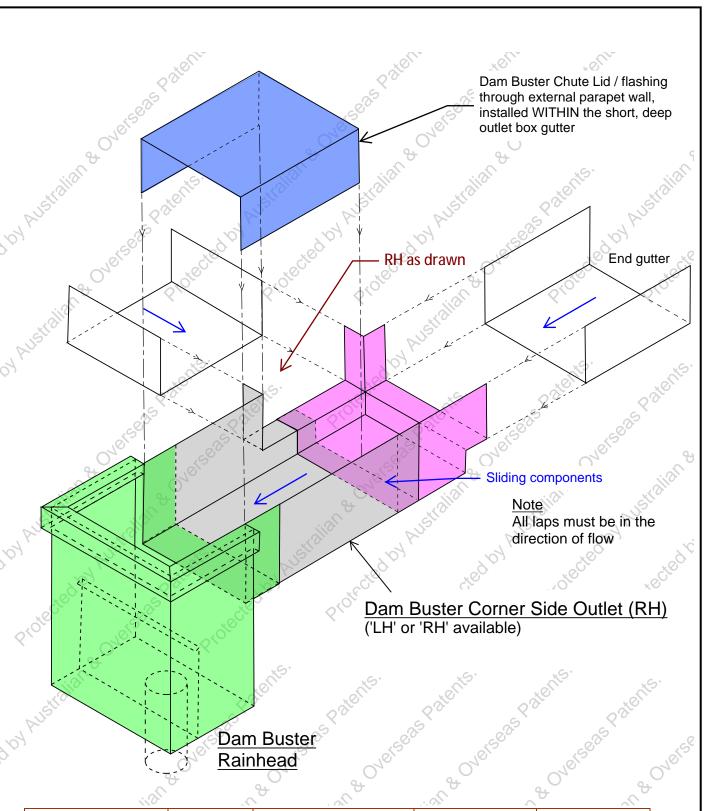

NOTES



	T Side Outlet	Side Outlet	Rainhead size	Side Outlet
	Size Width			Expansion range
	TSO-200	200 mm	R-200 or CR-200	200 to 350 mm
	TSO-300	300 mm	R-300 or CR-300	300 to 450 mm
7	TSO-400	400 mm	R-400 or CR-400	400 to 600 mm

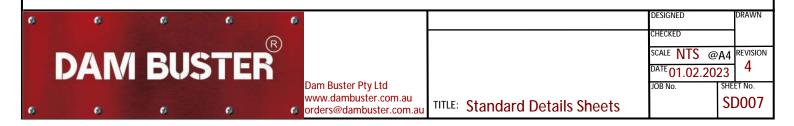

SD005 - Dam Buster T Side Outlet & Rainhead combination (NTS)

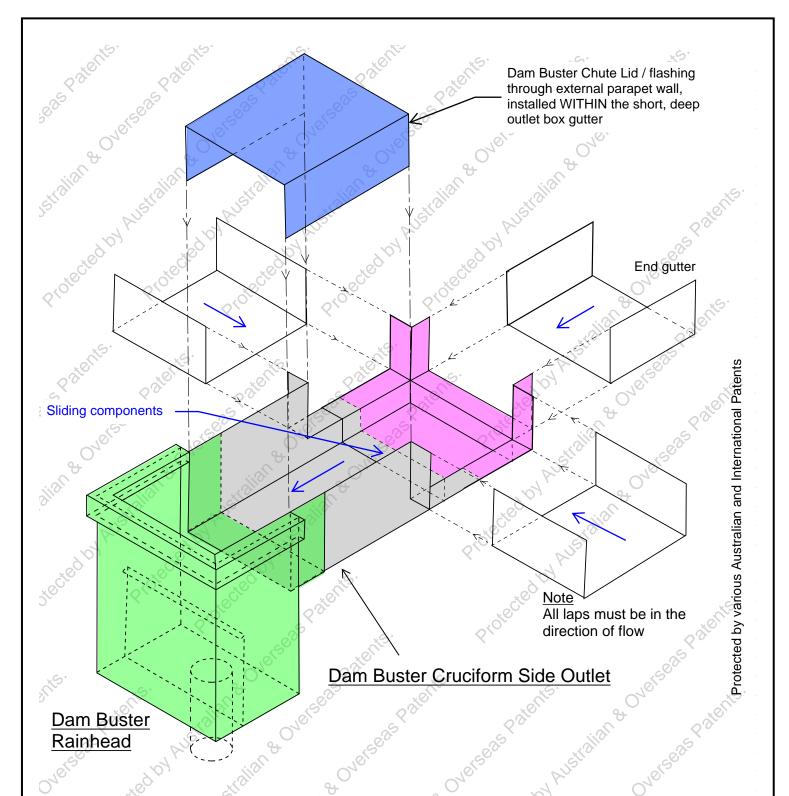




End Side	Outlet Size	Side Outlet	Rainhead size	Side Outlet
		Width		Expansion range
ESO-20	0-(L or R)	200 mm	R-200 or CR-200	200 to 350 mm
ESO-30	0-(L or R)	300 mm	R-300 or CR-300	300 to 450 mm
ESO-40	0-(L or R)	400 mm	R-400 or CR-400	400 to 600 mm

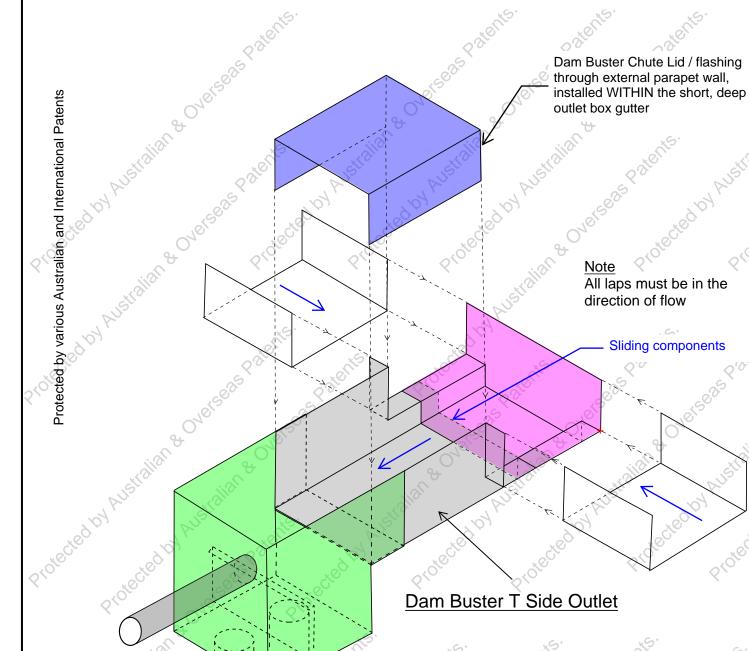
SD006 - Dam Buster End Side Outlet & Rainhead combination (NTS) NOTES





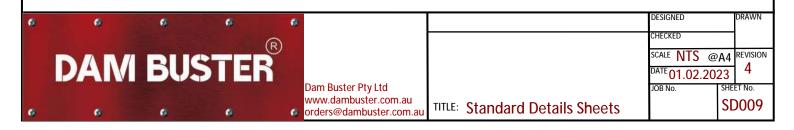
Corner Side Outlet	Side Outlet	Rainhead size	Side Outlet	End Box Gutter
Size	Width		Expansion range	Width
CSO-200-(L or R)	200 mm	R-200 or CR-200	200 to 350 mm	200 mm
CSO-300-(L or R)	300 mm	R-300 or CR-300	300 to 450 mm	300 mm
CSO-400-(L or R)	400 mm	R-400 or CR-400	400 to 600 mm	400 mm

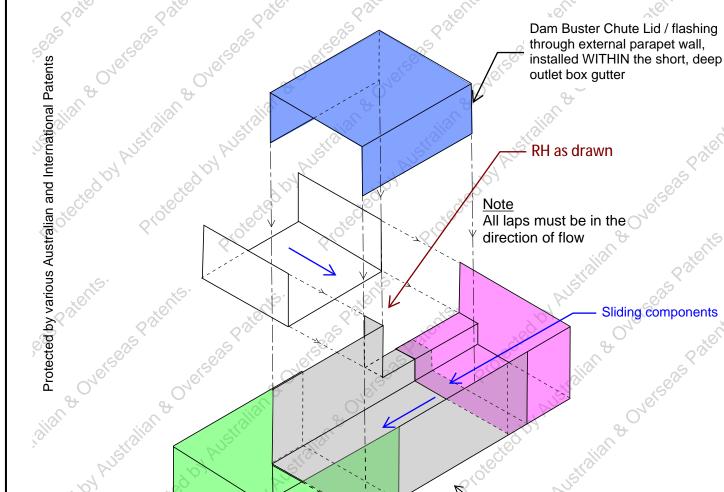

SD007 - Dam Buster Corner Side Outlet & Rainhead combination (NTS)



Cruciform Side	Side Outlet	Rainhead size	Side Outlet	End Box Gutter
Outlet Size	Width		Expansion range	Width
XSO-200	200 mm	R-200 or CR-200	200 to 350 mm	200 mm
XSO-300	300 mm	R-300 or CR-300	300 to 450 mm	300 mm
XSO-400	400 mm	R-400 or CR-400	400 to 600 mm	400 mm

SD008 - Dam Buster Cruciform Side Outlet & Rainhead combination (NTS) NOTES



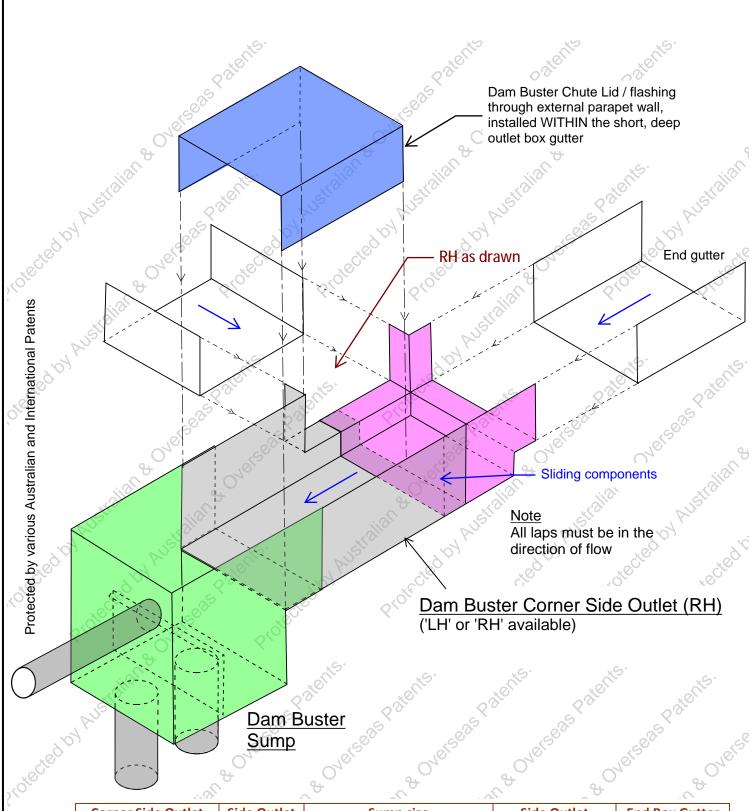


T Side Outlet	Side Outlet	Sump size	Side Outlet
Size	Width		Expansion range
TSO-200	200 mm	SU-200-100 or SU-200-150	200 to 350 mm
TSO-300	300 mm	SU-300-125 or SU-300-200	300 to 450 mm
TSO-400	400 mm	SU-400-150 or SU-400-200	400 to 600 mm

SD009 - Dam Buster T Side Outlet & Sump combination (NTS)

Dam Buster Sump

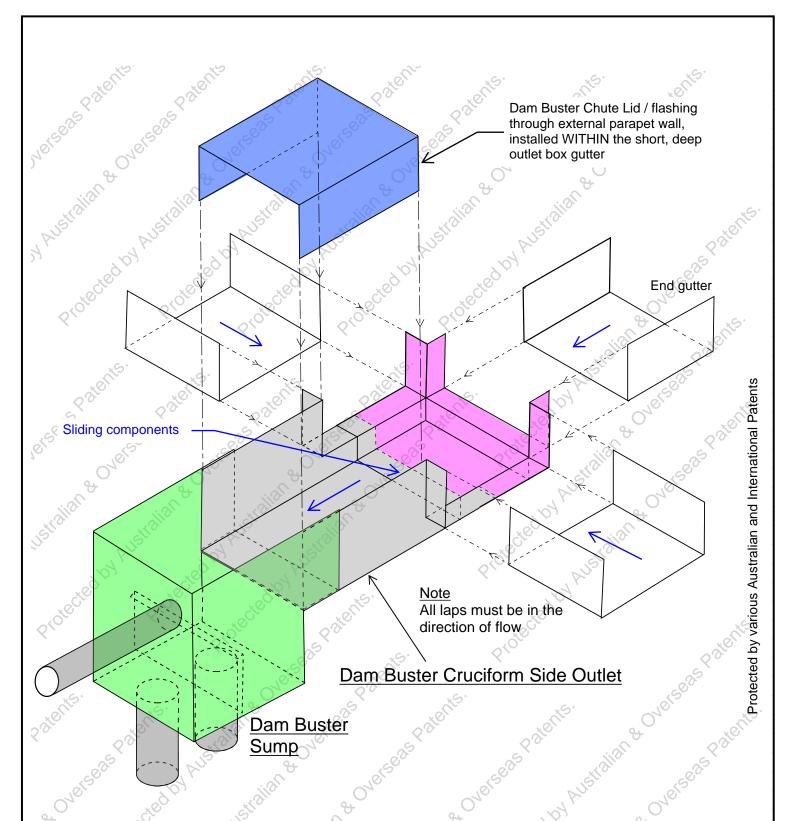

	End Side Outlet Size	Side Outlet	Sump size	Side Outlet
		Width		Expansion range
	ESO-200-(L or R)	200 mm	SU-200-100 or SU-200-150	200 to 350 mm
	ESO-300-(L or R)	300 mm	SU-300-125 or SU-300-200	300 to 450 mm
	ESO-400-(L or R)	400 mm	SU-400-150 or SU-400-200	400 to 600 mm


Dam Buster

SD010 - Dam Buster End Side Outlet & Sump combination (NTS)

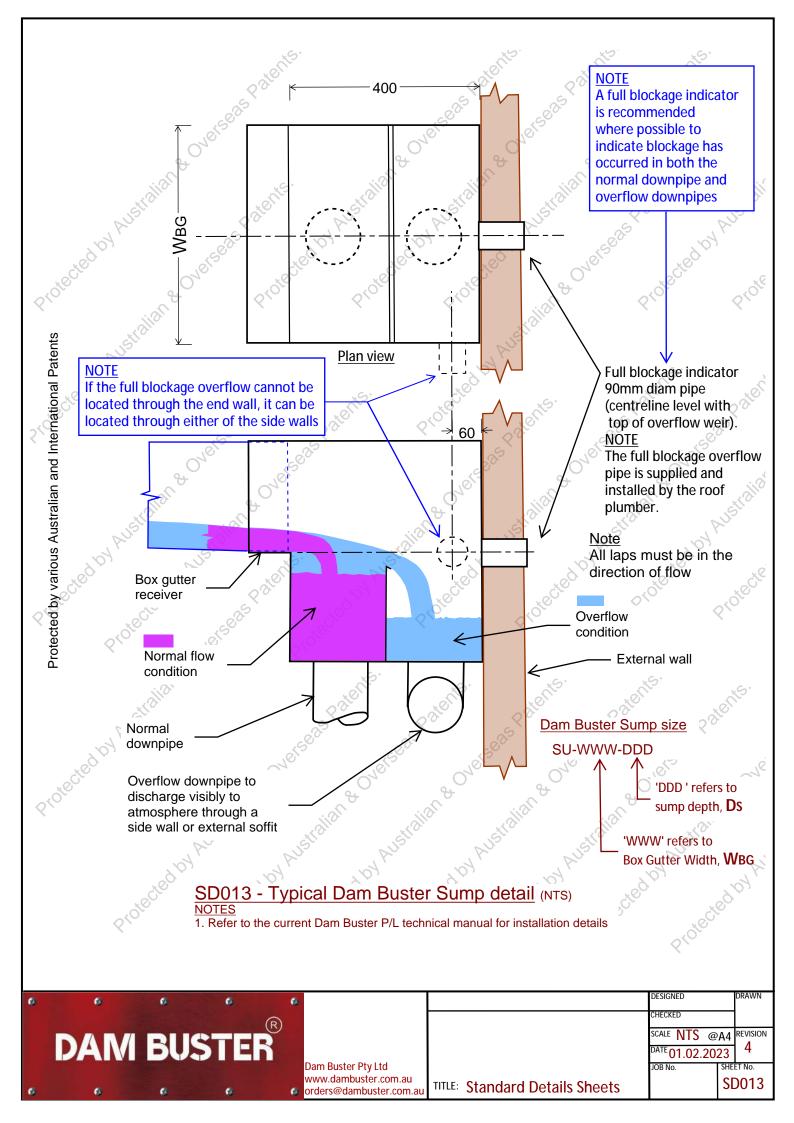
Sliding components

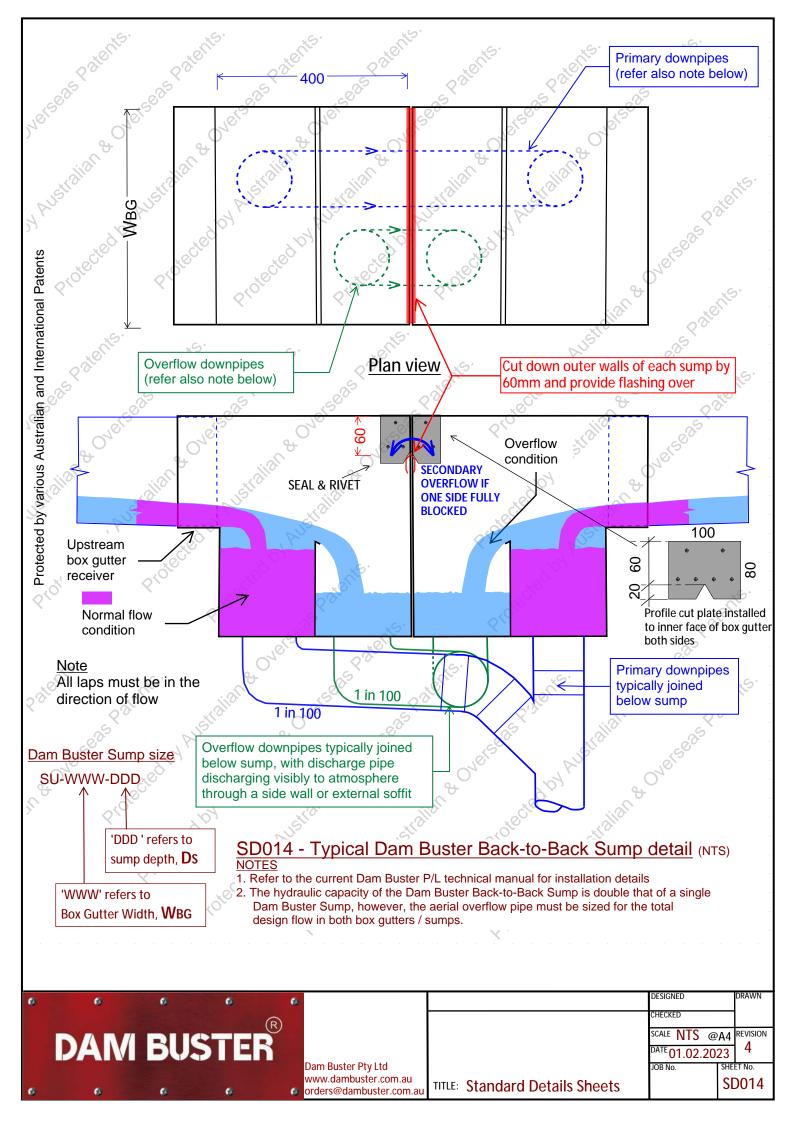
Dam Buster End Side Outlet (RH) ('LH' or 'RH' available)

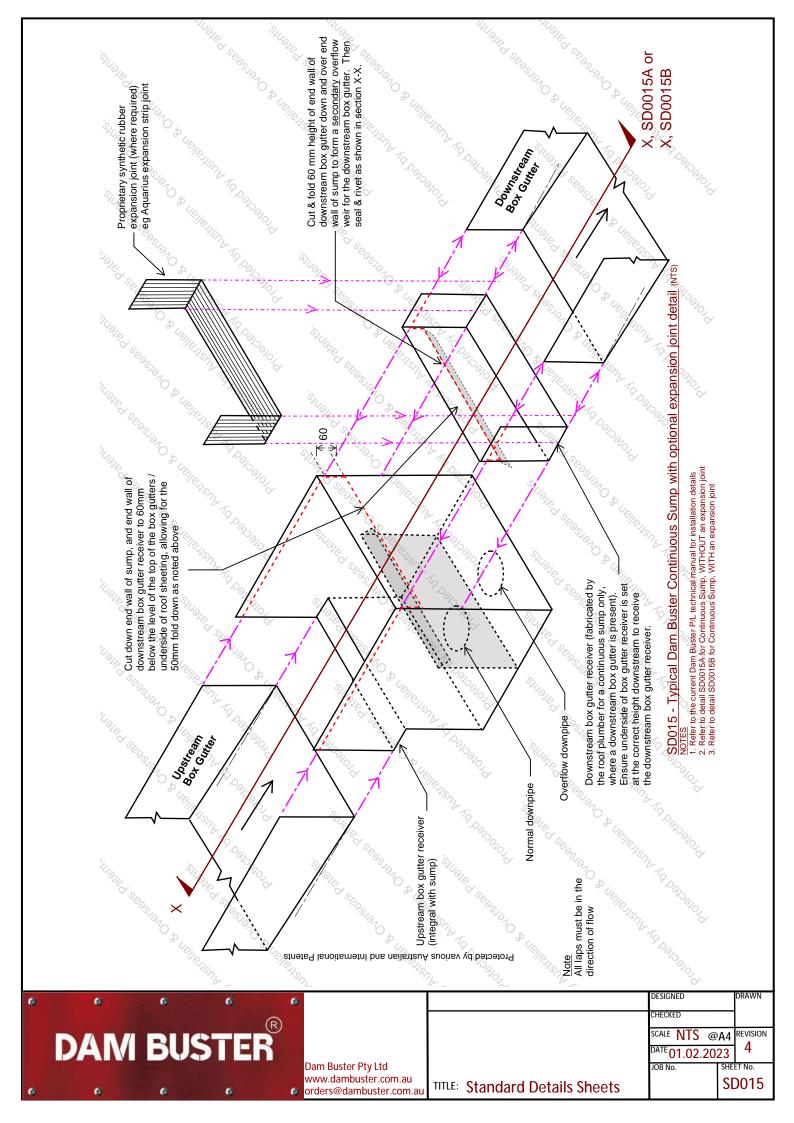


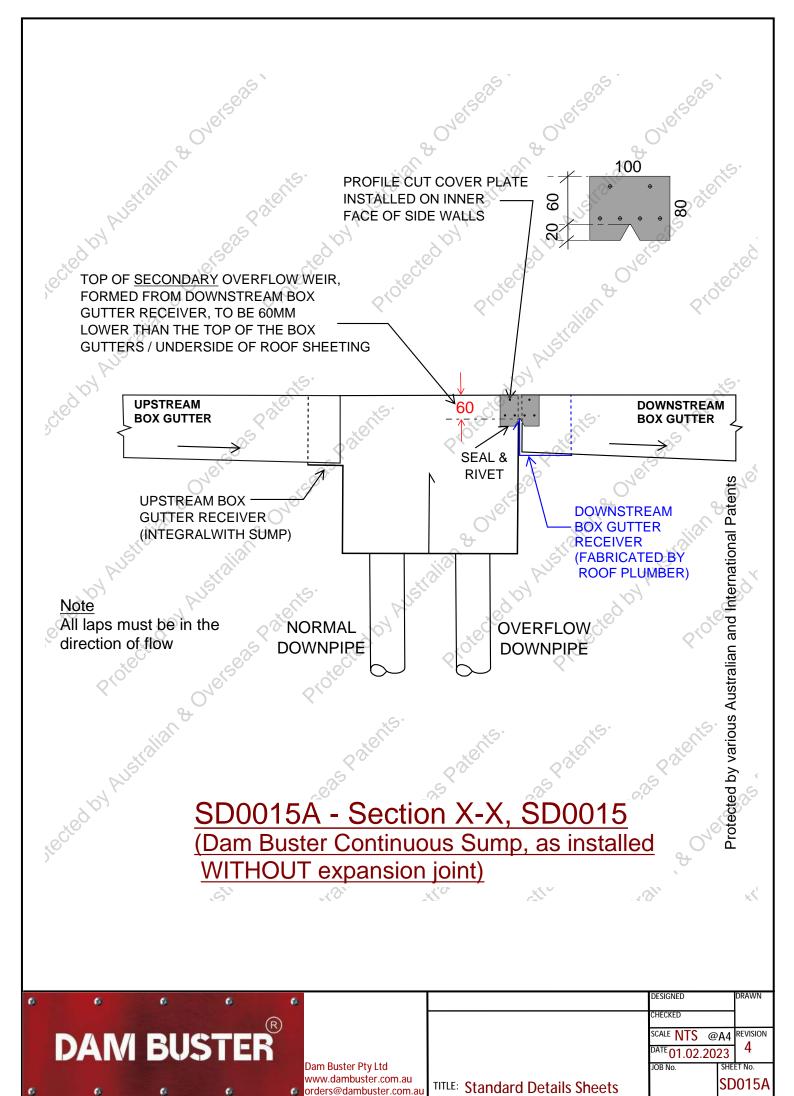
Corn	ner Side Outlet	Side Outlet	Sump size	Side Outlet	End Box Gutter
	Size	Width		Expansion range	Width
CSC	O-200-(L or R)	200 mm	SU-200-100 or SU-200-150	200 to 350 mm	200 mm
CSC	O-300-(L or R)	300 mm	SU-300-125 or SU-300-200	300 to 450 mm	300 mm
CSC	O-400-(L or R)	400 mm	SU-400-150 or SU-400-200	400 to 600 mm	400 mm

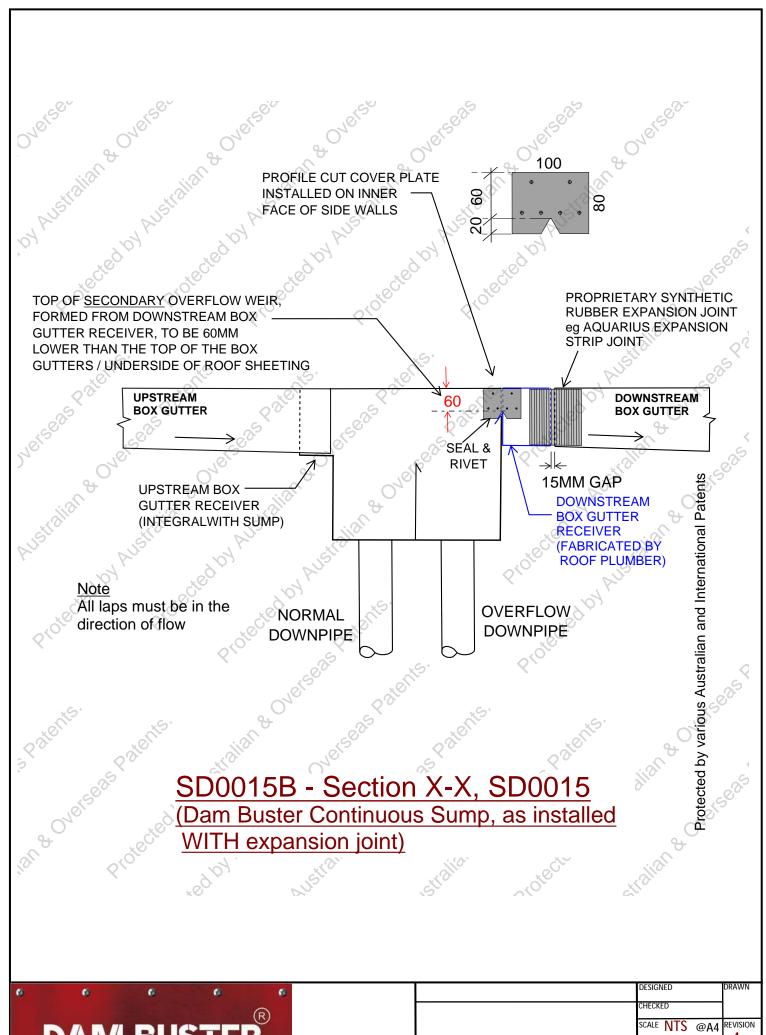
SD011 - Dam Buster Corner Side Outlet & Sump combination (NTS) NOTES

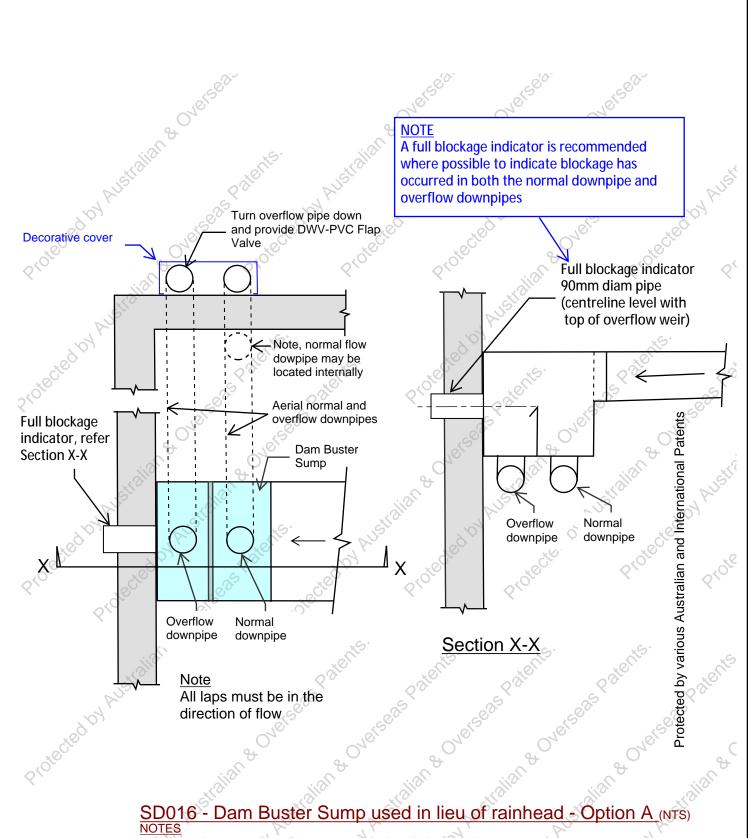


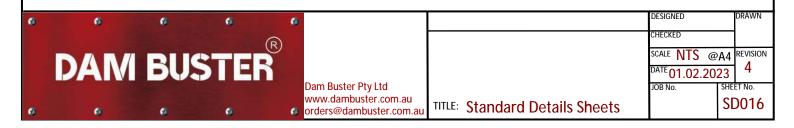


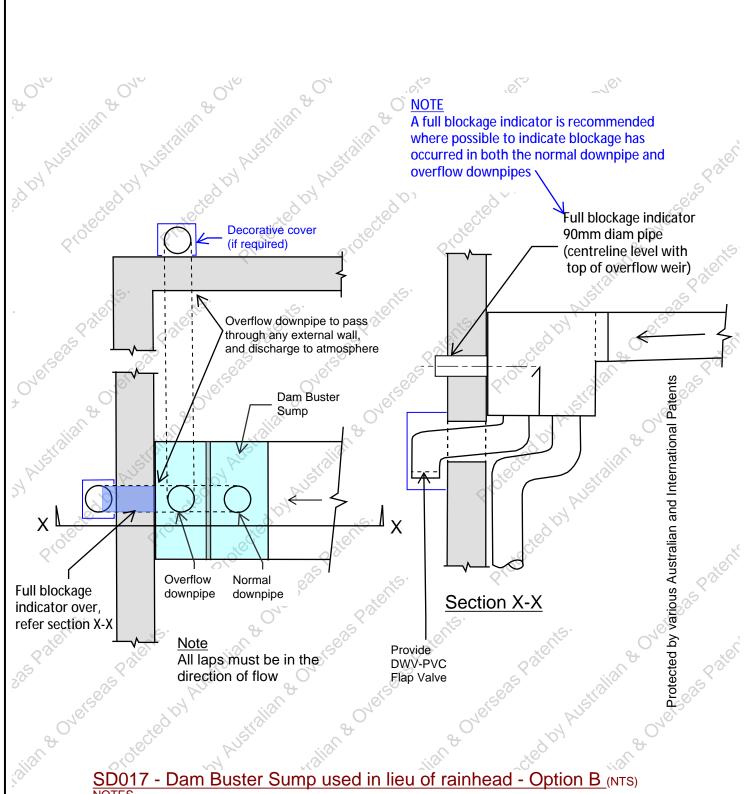

			<u> </u>	
Cruciform Side Side Outlet		Sump size	Side Outlet	End Box Gutter
Outlet Size	Width		Expansion range	Width
XSO-200	200 mm	SU-200-100 or SU-200-150	200 to 350 mm	200 mm
XSO-300	300 mm	SU-300-125 or SU-300-200	300 to 450 mm	300 mm
XSO-400	400 mm	SU-400-150 or SU-400-200	400 to 600 mm	400 mm

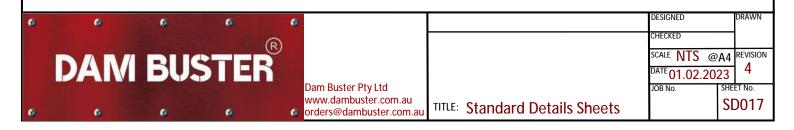

SD012 - Dam Buster Cruciform Side Outlet & Sump combination (NTS)

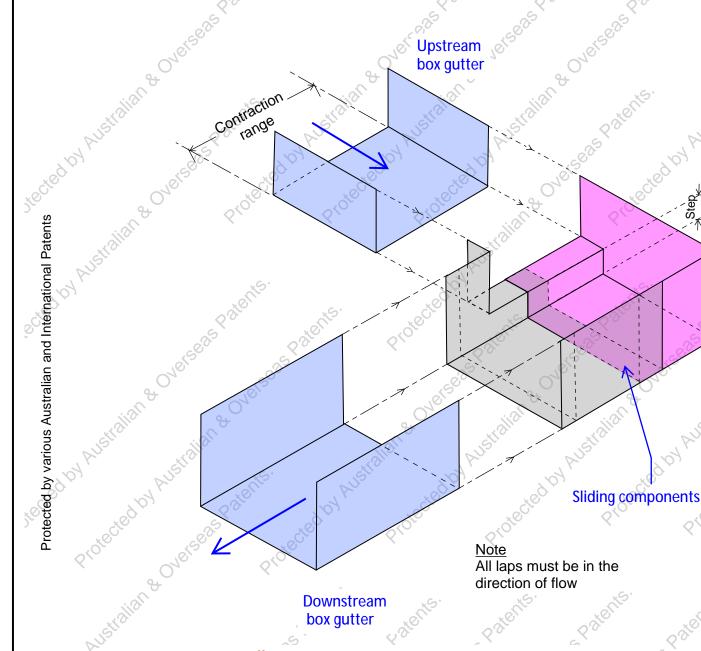




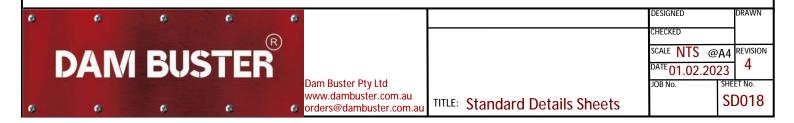


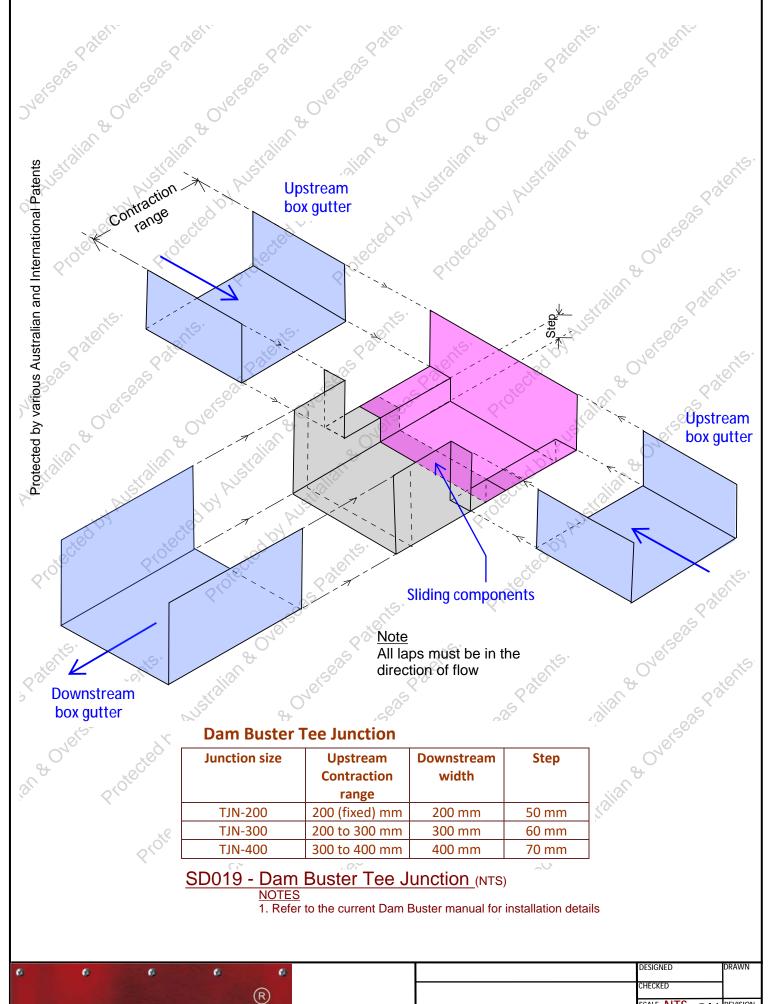





- 1. Refer to the current Dam Buster manual for installation details
- 2. This arrangement may be required where a rainhead cannot be installed at the external wall (for example, the box gutter is located above a window or door opening)
- 3. Refer also SD017 for an alternative arrangement

- 1. Refer to the current Dam Buster manual for installation details
- 2. This arrangement may be required where a rainhead cannot be installed at the external wall (for example, the box gutter is located above a window or door opening)
- 3. Refer also SD0016 for an alternative arrangement

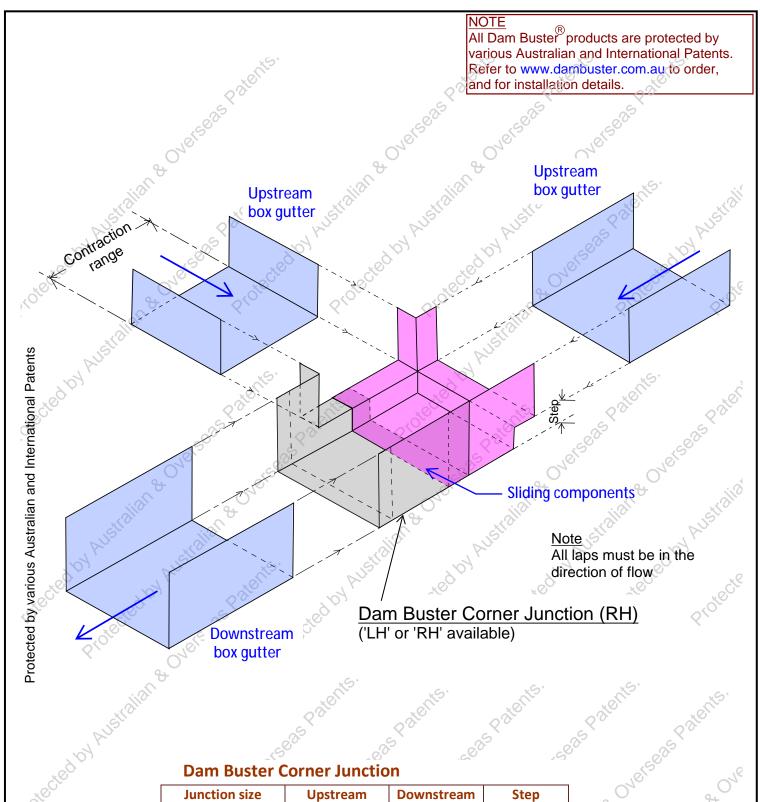

Dam Buster Elbow


Protected

Dam Buster Elbow size	Upstream Contraction range (mm)	Downstream box gutter width	Step						
ELB-200-(L or R)	200 (fixed) mm	200 mm	50 mm						
ELB-300-(L or R)	200 to 300 mm	300 mm	60 mm						
ELB-400-(L or R)	300 to 400 mm	400 mm	70 mm						
ELB-500-(L or R)	400 to 500 mm	500 mm	70 mm						
ELB-600-(L or R)	400 to 600 mm	600 mm	70 mm						
SD018 - Dam B	SD018 - Dam Buster Elbow (NTS)								

SD018 - Dam Buster Elbow (NTS)

1. Refer to the current Dam Buster manual for installation details



DAM BUSTER

Dam Buster Pty Ltd

www.dambuster.com.au
orders@dambuster.com.au
orders@dambuster.com.au

Junction size	Upstream Contraction range	Downstream width	Step
CJN-200 (L or R)	200 (fixed) mm	200 mm	50 mm
CJN-300 (L or R)	200 to 300 mm	300 mm	60 mm
CJN-400 (L or R)	300 to 400 mm	400 mm	70 mm

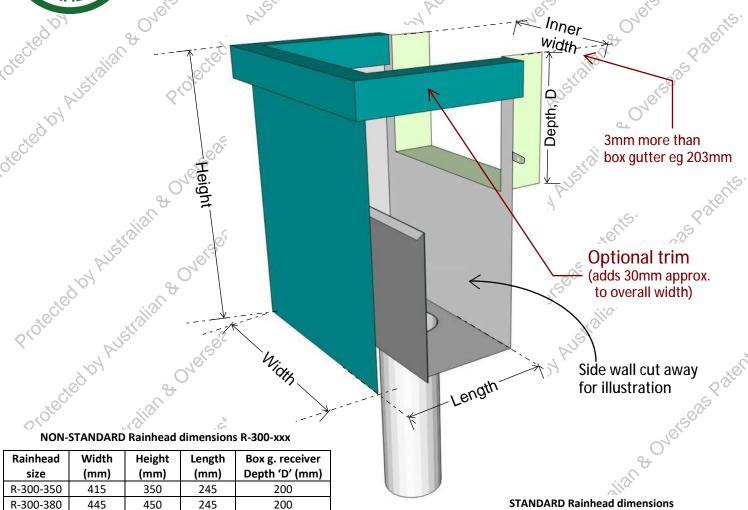
SD020 - Dam Buster Corner Junction (NTS)

NOTES

1. Refer to the current Dam Buster manual for installation details

Appendix D

Dam Buster Product Data Sheets


Product Data Sheet Rainhead R-www &

R-www-F

Standard sizes to suit 200mm, 300mm, 400mm, 500mm and 600mm wide box gutters. Refer to the table below for available Non-Standard sizes.

-F refers to the Flat Back version of the rainhead (i.e no box gutter receiver)

NOTES

R-300-400

R-300-450

R-300-500

465

515

565

1. Other Non-standard sizes may become available in the future.

600

650

700

245

245

245

200

200

200

Custom rainhead sizes are also possible (contact Dam Buster).

HARDWARE AND BUILDING PRODUCT DESIGN

Rainhead

size

R-200

R-300

R-400

R-500

R-600

Width

(mm)

265

365

465

565

665

Height

(mm)

350

450

600

650

700

GOOD DESIGN AWARD WINNER

Length

(mm)

205

245

325

325

Box g. receiver

Depth 'D' (mm)

200

200

250

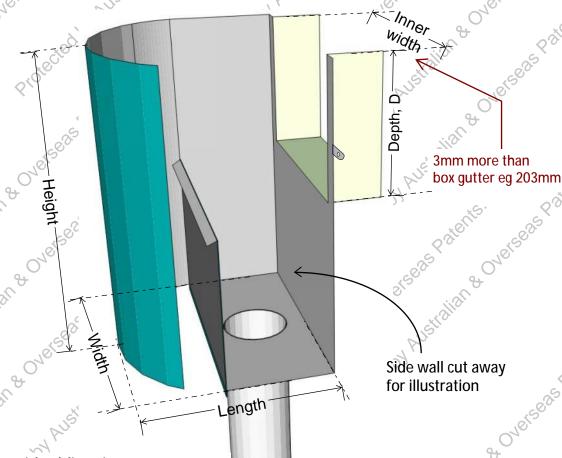
275

300

DAM BUSTER RAIN HEAD

CERTIFIED PRODUCT (DAM BUSTER RAINHEAD OVERFLOW PERFORMANCE)

www.dambuster.com.au


Product Data Sheet Curved Rainhead CR-www &

CR-www-F

Standard sizes to suit 200mm, 300mm, 400mm 500mm & 600mm wide box gutters.

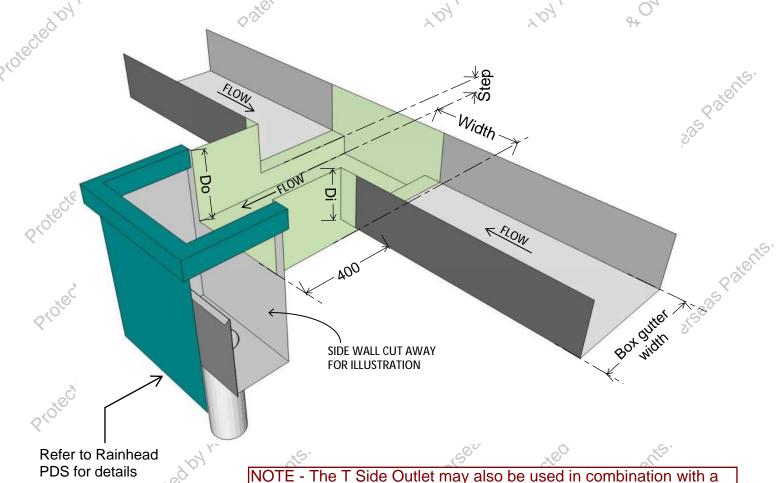
-F refers to the Flat Back version of the rainhead (i.e no box gutter receiver)

CURVED Rainhead dimensions

Rainhead size	Width (mm)	Height (mm)	Length (mm)	Box gutter receiver Depth 'D' (mm)
CR-200	265	350	240	200
CR-300	365	450	290	200
CR-400	465	600	375	250
CR-500	565	650	375	275
CR-600	665	700	375	300

CERTIFIED PRODUCT (DAM BUSTER RAINHEAD)

PRODUCT DESIGN HARDWARE AND BUILDING GOOD DESIGN AWARD® WINNER


> DAM BUSTER RAIN HEAD

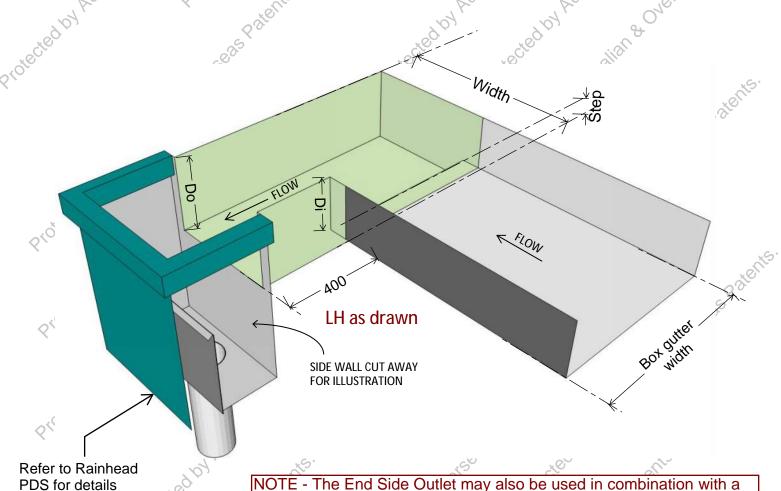
Product Data Sheet 'T' Side Outlets TSO-www

Standard sizes to suit any box gutter width between 200mm to 600mm. Must only be used in combination with a Dam Buster Rainhead

'T' Side Outlet dimensions

Projectes

Side Outlet size	Rainhead size	Width (mm)	Step (mm)	INLET Depth, Di (mm)	OUTLET Depth, Do (mm)	Box gutter width range (mm)
TSO-200	R-200 or CR-200	200	50	150	200	200 to 350
TSO-300	R-300 or CR-300	300	60	140	200	300 to 450
TSO-400	R-400 or CR-400	400	70	180	250	400 to 600

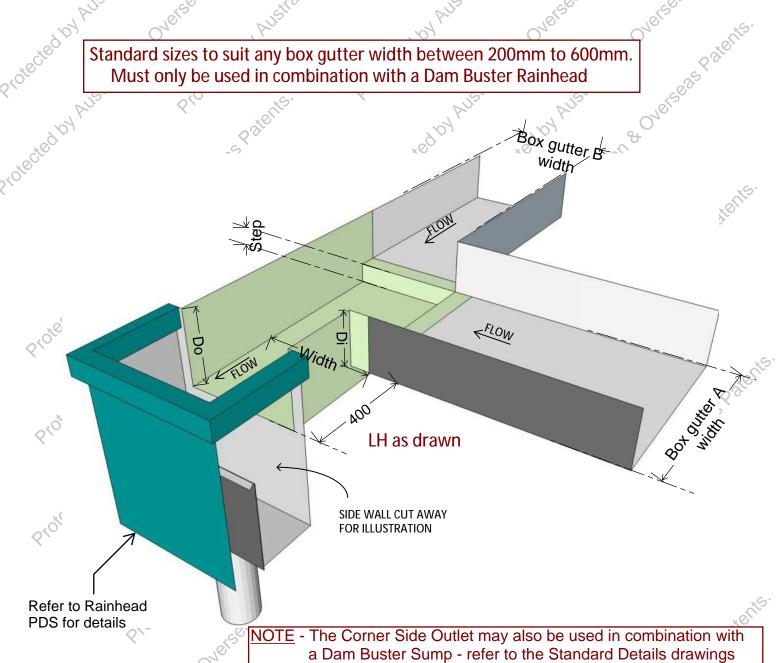

Dam Buster Sump - refer to the Standard Details drawings

Product Data Sheet 'End' Side Outlets ESO-www-(L or R)

Standard sizes to suit any box gutter width between 200mm to 600mm. Must only be used in combination with a Dam Buster Rainhead

'End' Side Outlet dimensions

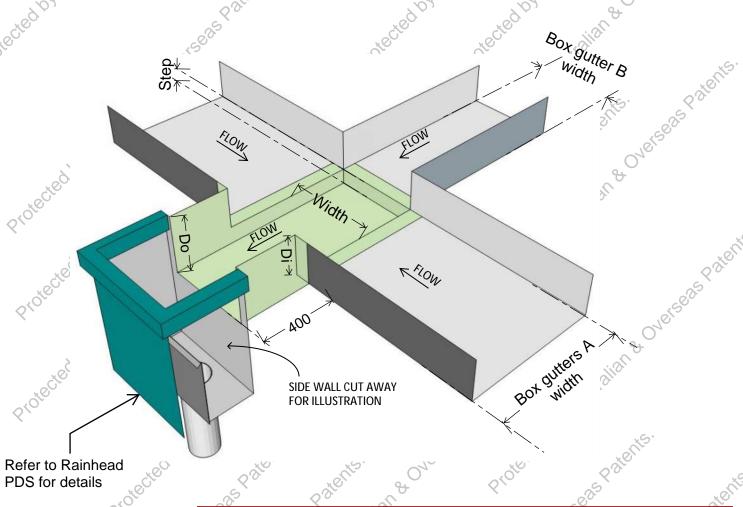
Side Outlet size	Rainhead size	Width (mm)	Step (mm)	INLET Depth, Di (mm)	OUTLET Depth, Do (mm)	Box gutter width range (mm)
ESO-200-L or R	R-200 or CR-200	200	50	150	200	200 to 350
ESO-300-L or R	R-300 or CR-300	300	60	140	200	300 to 450
ESO-400-L or R	R-400 or CR-400	400	70	180	250	400 to 600


Dam Buster Sump - refer to the Standard Details drawings

Product Data Sheet Corner' Side Outlets CSO-www-(L or R)

Standard sizes to suit any box gutter width between 200mm to 600mm. Must only be used in combination with a Dam Buster Rainhead

'Corner' Side Outlet dimensions

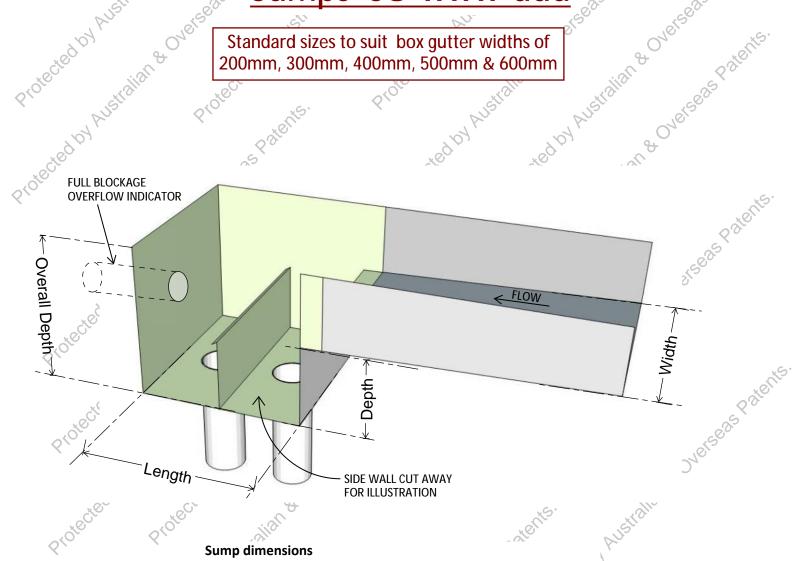

Side Outlet Size	Rainhead size	Width (mm)	Step (mm)	INLET Depth, Di (mm)	OUTLET Depth, Do (mm)	Box gutter A width range (mm)	Box gutter B width (mm)
CSO-200-L or R	R-200 or CR-200	200	50	150	200	200 to 350	200
CSO-300-L or R	R-300 or CR-300	300	60	140	200	300 to 450	300
CSO-400-L or R	R-400 or CR-400	400	70	180	250	400 to 600	400

Product Data Sheet 'Cruciform' Side Outlets XSO-www

Standard sizes to suit any box gutter width between 200mm to 600mm. Must only be used in combination with a Dam Buster Rainhead

NOTE - The Cruciform Side Outlet may also be used in combination with a Dam Buster Sump - refer to the Standard Details drawings

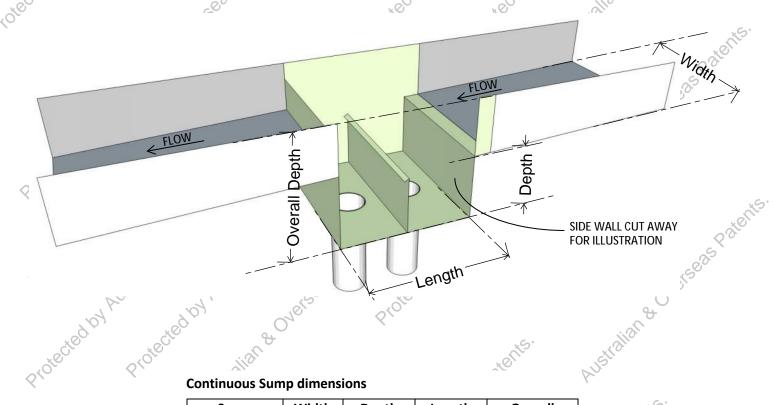
'Cruciform' Side Outlet dimensions


Side Outlet Size	Rainhead size	Width (mm)	Step (mm)	INLET Depth, Di (mm)	OUTLET Depth, Do (mm)	Box gutters A width range (mm)	Box gutters B width range (mm)
XSO-200	R-200 or CR-200	200	50	150	200	200 to 350	200
XSO-300	R-300 or CR-300	300	60	140	200	300 to 450	300
XSO-400	R-400 or CR-400	400	70	180	250	400 to 600	400

Product Data Sheet Sumps SU-www-ddd

Australian & Overseas Pr Standard sizes to suit box gutter widths of 200mm, 300mm, 400mm, 500mm & 600mm

RIC	Sump dimensio	ns			-1/4	
9	Sump size	Width (mm)	Depth (mm)	Length (mm)	Overall Depth (mm)	Raterits.
arotectes	SU-200-100	205	100	400	300	Quit
*SC					300	S
2500	SU-200-150	205	150	400	350	.500 anito
X	SU-300-125	305	125	400	330	3)
	SU-300-200	305	200	400	405	9,700
	SU-400-150	405	150	400	400	ers
10	SU-400-200	405	200	400	450	iseas Pate Overseas Patents.
ch all	SU-500-150	505	150	400	300	.
Mis	SU-500-200	505	200	400	400	
24	SU-600-150	605	150	400	300	Silio
-69	SU-600-200	605	200	400	400	RUS
Protected by Australian			Q	,oje	cted b	
Rec		www.	dambuster.d	com.au	O'O'llo	
					<u> </u>	

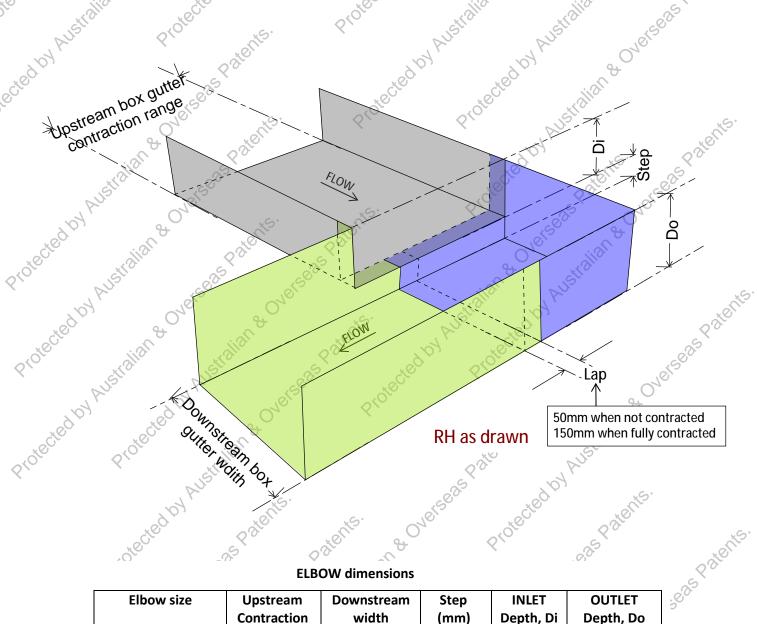


Product Data Sheet Continuous Sumps SU-www-ddd*

* Ordered as a Dam Buster Sump

Standard sizes to suit box gutter widths of 200mm, 300mm, 400mm, 500mm & 600mm

Continuous Sump dimensions

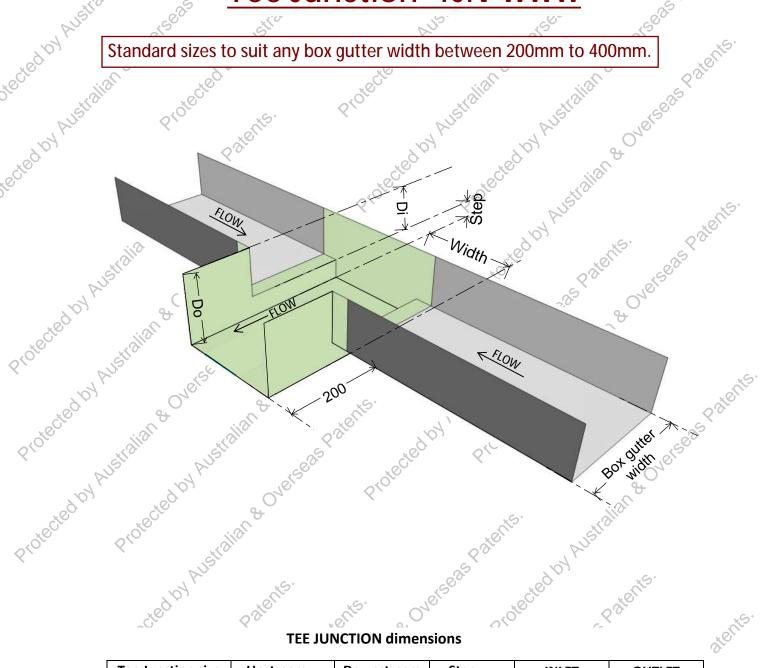

	Sump	Width	Depth	Length	Overall	seas Paterits.
5.	size	(mm)	(mm)	(mm)	Depth (mm)	- Citor
cie	SU-200-100	205	100	400	300	EP Sign
a rotested	SU-200-150	205	150	400	350	seas Pate Overseas Patents.
	SU-300-125	305	125	400	330	S
	SU-300-200	305	200	400	405	8203
	SU-400-150	405	150	400	400	,815
187	SU-400-200	405	200	400	450	07
ALON.	SU-500-150	505	150	400	300	&
Mis	SU-500-200	505	200	400	400	
W.	SU-600-150	605	150	400	300	Elio
69	SU-600-200	605	200	400		I P
Protected by Australian			<'	oie	cied by	
Re		www.c	dambuster.c	om.au	Oroje	
					X	

Product Data Sheet Elbows - ELB-www- (L or R)

Standard sizes to suit any box gutter width between 200mm to 600mm.

ELBOW dimensions

	Elbow size	Upstream Contraction range (mm)	Downstream width (mm)	Step (mm)	INLET Depth, Di (mm)	OUTLET Depth, Do (mm)
	ELB-200- (L or R)	200 (fixed)	197	50	180	230
	ELB-300- (L or R)	200 to 300	297	60	215	275
	ELB-400- (L or R)	300 to 400	397	70	230	300
50	ELB-500- (L or R)	300 to 500	497	70	230	300
ac'te	ELB-600- (L or R)	400 to 600	597	70	230	300
Projecter	a diedie		8,0		*ected	
	ζ,	100000	dambuster com	211	40,	

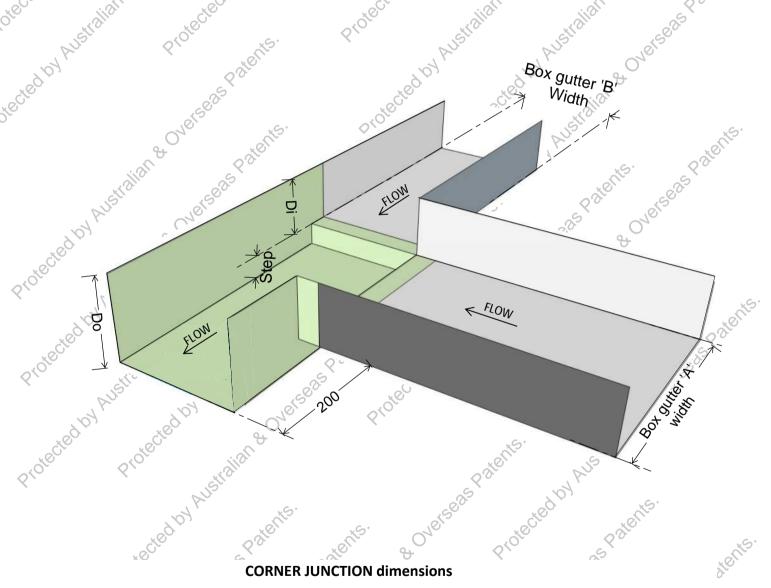


Projectied'

Product Data Sheet Tee Junction TJN-www

Standard sizes to suit any box gutter width between 200mm to 400mm

TEE JUNCTION dimensions


Tee Junction size	Upstream	Downstream	Step	INLET	OUTLET
	Contraction	width	(mm)	Depth, Di	Depth, Do
	range (mm)	(mm)		(mm)	(mm)
TJN-200	200 (fixed)	197	50	180	230
TJN-300	200 to 300	297	60	215	275
TJN-400	300 to 400	397	70	230	300

Product Data Sheet Corner Junction CJN-www-(L or R)

Standard sizes to suit any box gutter width between 200mm to 400mm.

CORNER JUNCTION dimensions

	Corner Junction Size	Downstream width (mm)	Step (mm)	INLET Depth, Di (mm)	OUTLET Depth, Do (mm)	Box gutter A contraction range (mm)	Box gutter B width (mm)
	CJN-200 (L or R)	197	50	180	230	200	200
	CJN-300 (L or R)	297	60	215	275	200 to 300	300
	CJN-400 (L or R)	397	70	230	300	300 to 400	400
O'	otected rected	0,		84	ŠEČĖ"	cied by "	
	040		\\/\\/\\	dambuster (rom au	*©	

Appendix E

Risk Management (Design) & Maintenance of Box Gutter Systems

Risk Management (Design) &

Maintenance of Box Gutter Systems

E1 Failure of box gutter installations

Box gutter systems can and do fail - far more often than they should - and have consequently developed a 'bad reputation'. As a result, Architects and Building Designers often fear box gutters, but this fear is unfounded for a well-designed and constructed box gutter system, incorporating adequate and compliant overflow devices.

Failure predominately occurs due to one or more of the following factors:

- Inadequate / non-existent design and documentation, particularly concerning overflow provision and box gutter depths.
- Non-compliant / poor construction and installation
- Inadequate maintenance of box gutters

E2 Current quality of design and documentation for roof drainage in Australia

The level of design and documentation of box gutter systems in Australia is currently generally very poor. There are multiple reasons for this, including the following:

- Incorrect design on Architectural plans
- A lack of understanding, including by Building Certifiers, of the basic principles of roof drainage design
- Non-compliant / poor construction and installation
- AS/NZS 3500.3-2021 ('3500.3') is not an easy code to design to, and lacks flexibility in design, providing only three types of overflow devices
- Building Surveyors / Certifiers often do not require certification for roof drainage designs, particularly for residential and multi-unit residential type buildings. However, with introduction of new NCC Governing Provision A2.2(4) on 1 July 2021, Building Certifiers are increasingly requiring that the Performance Solution process be adhered to when the roof drainage is clearly not DtS (Deemed-to-Satisfy)

E3 The Dam Buster Solution to Roof Drainage problems

Dam Buster seeks to remedy many of the above problems by:

- Providing a simple design / selection process, based on the calculated design flow rate only
- Providing a rainhead which is fully compliant, aesthetically pleasing, has substantial overflow capacity and is also easy to install. Importantly the rainhead also has a novel box gutter receiver, allowing a good seal to be readily achieved between the box gutter and the rainhead. This is important because this junction is a very common point of water ingress into a building.
- Providing a range of innovative overflow devices which provide much greater flexibility for design, specifically:
 - o the Dam Buster Side Outlet and Rainhead or Sump combination,
 - o the Dam Buster Sump, Continuous Sump and Back-to-Back Sump
 - o the Dam Buster Elbow & Junctions
- Adoption of a minimum depth of 150mm for the penetration for the box gutter in a parapet wall, where a straight box gutter discharges to a rainhead (even though the depth of the box gutter may be closer to 100mm in some cases). Note that the outlet box gutter for the Dam Buster Side Outlets is always a least 200mm deep (and hence the penetration in the parapet wall is a least 200mm deep).

When a box gutter system is designed and installed to comply with the relevant standards and Dam Buster's documentation, the risk of failure is significantly minimized, provided the property owner carries out normal and regular maintenance (refer E6).

E4 Design considerations to mitigate against the risk of failure

The following issues should be considered by designers of box gutter systems in order to minimize the risk of failure:

- A box gutter discharging directly to a Dam Buster Rainhead is the preferred method of discharging water from a box gutter as it places all of the overflow device outside of the building.
 - <u>Note:</u> The 3500.3 standard Rainhead is only as a safe as the Dam Buster Rainhead if the box gutter is adequately sealed to the rainhead. However, without a box gutter receiver, it is much more difficult to get a good seal (and, very commonly, the seal is inadequate). Consequently the 3500.3 Rainhead is considered to be a less safe option than the Dam Buster Rainhead when the box gutter has not been adequately sealed to the rainhead. It is also very rare to see a rainhead installed in accordance with 3500.3, and typically installed rainheads also have inadequate overflow capacity and sizing.
- The next preferred box gutter overflow devices are:
 - o The Dam Buster Side Outlet and Rainhead combination
 - The 3500.3 Sump and Side Outlet (when correctly designed and installed)
- The more complicated devices are:
 - o The Dam Buster Sump / Continuous Sump / Back-to-Back Sump
 - o The Dam Buster Side Outlet and Sump combination

- The 3500.3 Sump / High-Capacity Overflow device
- o Note
 - The above devices have similar safety when installed 'internally' i.e. not immediately adjacent to a parapet wall
 - However, when the Dam Buster Sump is installed immediately adjacent to a parapet wall, the 90mm diameter Full Blockage Overflow Indicator should be installed whenever possible to increase the safety of this device, particularly if there are nearby trees which are expected to deposit organic material in the gutters (refer also to the note below). A common example of the usage of this device in lieu of a rainhead is where a rainhead cannot be installed due to a window or door opening being present below a box gutter which is perpendicular to the parapet wall.
- The presence, or future presence, of nearby trees which are (or will be) taller than the roof line will affect the design of the roof drainage system.
- The usage of 200mm wide box gutters should be avoided wherever possible. Dam Buster recommends all new box gutters be 300mm minimum wide, and notes 3500.3, section 3.7.3, Note 3 states:
 - "The minimum width of box gutters used for commercial construction is 300mm. Box gutters 200mm wide may be used for domestic construction, but they are more prone to blockages. Additional height is recommended where possible"
- When utilizing the Dam Buster Elbow to facilitate a 90 degree change in direction, it is important to consider that in the 200mm size in particular, this will slightly increase the risk of blockage, purely due to the reduced self-cleaning action as alerted to in section 3.7.3 of 3500.3 above. As a result, for roofs with nearby trees or the risk of other wind-blown debris, or any other conditions which may lead to potentially higher risk of box gutter obstruction, the 200mm Dam Buster Elbow is not recommended (300mm min is recommended).
 - Note that the Dam Buster Elbow has been hydraulically designed and tested to ensure the energy loss at the bend (change of direction) is less than the energy created by means of the Step built into the Elbow. This design ensures that backwatering in the 'Upper' box gutter cannot occur. Additionally, this device has more freeboard built into the design than other devices.

E5 Summary - Risk Management

In summary, there are various matters to consider when designing roof drainage, and also various strategies to minimize the risk of failure. A well-considered design in accordance with the relevant standards and also using the Dam Buster Roof Drainage System, carried out during the design process (i.e. as part of the Building Permit documentation) will, if correctly installed, ensure compliance and also minimize the risk of any potential failure of a box gutter system.

E6 Cleaning / maintenance of box gutter systems

AS/NZS 3500.3-2021, section M.5, states:

'Sizing of stormwater drainage installations assumes the responsible owner or manager arranges regular inspection and cleaning to remove any obstructions that could reduce the installation's hydraulic capacity or design lifetime, or both.

Obstructions that could cause partial or complete reduction in the hydraulic capacity are windborne plastics, drink cans, builder's refuse, balls, bird nests, items deposited by birds, dead birds, leaves, moss, mortar, silt or similar obstructions.

Guards on gutters and gutter outlets and screens on outlets from on-site stormwater detention (OSD) facilities are installed to prevent reduction in hydraulic capacity due to obstructions. Installation of such guards and screens does not eliminate the need for regular inspection and cleaning. Guards used with rainwater goods might collect debris during high intensity storms, in spite of regular inspection and cleaning, and for this reason it might be better not to install such guards, particularly on box gutter sumps'

Whilst ideally all owners would carry out regular inspection and maintenance, this often does not happen, and consequently it is incumbent on the roof drainage designer to minimize the risk of failure in the first instance through good, compliant design.

E7 **Limitations**

At all times, normal good practices and "common sense" must be observed when designing, specifying and installing roof drainage systems. It is also very important to consider that whilst the Dam Buster Roof Drainage System is thoroughly engineered and tested, if instructions and relevant codes are not followed, failure may still occur.

With the exception of a straight box gutter discharging to a Dam Buster rainhead, all Dam Buster solutions require a Performance Solutions. Performance Solutions should only be carried out by appropriately qualified professionals, who have a thorough knowledge of the appropriate standards (in particular, AS/NZS 3500.3).

It is important to remember that Deemed-to-Satisfy Solutions represent the <u>minimum</u> acceptable solutions to satisfy the relevant Performance Requirements. Whilst a properly prepared Performance Solution does not have to comply with the DtS provisions, the level of safety of a Performance Solution should logically not be of a lesser quality / safety than that for a Deemed-to-Satisfy Solution to the same situation. It therefore follows that Performance Solutions should never be used as a means by which to justify a non-compliant DtS Solution, nor any outcome which provides a lower level of quality / safety than a DtS solution.

Appendix F

Box gutter design charts

Design flow	Example Box gutter width (mm)								
rate L/s	200	250 (300	350	400	450	500	550	600
3.0	107	101	96	93	90	88	86	84	83
3.5	113	105	100	96	93	91	89	87	85
4.0	118	110	104	100	96	94	91	89	88
4.5	122	114	107	103	99	96	94	92	90
5.0	127	118	111	106	102	99	96	94	92
5.5	131	121	114	109	105	101	99	96	94
(6.0)	135	125 🔇	118	112	107	104	101	98	96
6.5	140	129	121	115	110	106	103	101	98
7.0	144	132	124	118	113	109	105	103	100
7.5	148	135	127	120	115	111	107	105	102
8.0	151	139	130	123	118	113	110	107	104
8.5	155	142	133	125	120	115	112	108	106
9.0	159	145	135	128	122	118	114	110	107
9.5	162	148	138	131	125	120	116	112	109
10.0	166	151	141	133	127	122	118	114	111
10.5	170	154	144	135	129	124	119	116	113
11.0	173	157	146	138	131	126	121	118	114
11.5	176	160	149	140	133	128	123	119	116
12.0	180	163	151	142	135	130	125	121	118
12.5	183	166	154	145	137	132	127	123	119
13.0	186	169	156	147	140	134	129	124	121
13.5	190	172	159	149	142	135	130	126	122
14.0	193	174	161	151	144	137	132	128	124
14.5	196	177	164	154	146	139	134	129	125
15.0	199	180	166	156	148	141	135	131	127
15.5	202	182	168	158	149	143	137	132	128
16.0	205	185	171	160	151	144	139	134	130

Minimum UPSTREAM box gutter depth (mm) for **1 in 200*** slope

* 1:200 slope equates to 5mm per m increasing depth over the length of the gutter

Example

300mm wide box gutter Flow rate = 6.0 L/s

=> Minimum UPSTREAM depth = 118mm
Recommend rounding up to nearest 5mm => Adopt 120mm UPSTEAM depth

Design flow	Example Box gutter width (mm)								
rate L/s	200	250 🤇	300	350	400	450	500	550	600
3.0	104	98	94	90	88	86	84	82	81
3.5	109	102	97	94	91	88	87	85	83
4.0	113	106	101	97	94	91	89	87	86
4.5	118	110	104	100	96	94	91	89	88
5.0	122	113	107	103	99	96	94	92	90
5.5	126	117	110	105	102	98	96	94	92
6.0	130	120 🤇	113	108	104	101	98	96	94
6.5	134	124	116	111	106	103	100	98	95
7.0	138	127	119	113	109	105	102	99	97
7.5	141	130	122	116	111	107	104	101	99
8.0	145	133	125	118	113	109	106	103	101
8.5	148	136	127	121	116	111	108	105	102
9.0	152	139	130	123	118	113	110	107	104
9.5	155	142	133	125	120	115	112	108	106
10.0	158	145	135	128	122	117	113	110	107
10.5	162	148	138	130	124	119	115	112	109
11.0	165	150	140	132	126	121	117	113	110
11.5	168	153	142	134	128	123	119	115	112
12.0	171	156	145	136	130	125	120	117	113
12.5	174	158	147	139	132	126	122	118	115
13.0	177	161	149	141	134	128	124	120	116
13.5	180	164	152	143	136	130	125	121	118
14.0	183	166	154	145	138	132	127	123	119
14.5	186	169	156	147	139	133	128	124	121
15.0	189	171	158	149	141	135	130	126	122
15.5	192	174	161	151	143	137	132	127	123
16.0	195	176	163	153	145	138	133	129	125

Minimum UPSTREAM box gutter depth (mm) for ${f 1}$ in ${f 150}^*$ slope

* 1:150 equates to **7mm approx. per m** increasing depth over the length of the gutter

Example

300mm wide box gutter

Flow rate = 6.0 L/s

=> Minimum UPSTREAM depth = 113mm

Recommend rounding up to nearest 5mm => Adopt 115mm UPSTEAM depth

Design flow	Example Box gutter width (mm)								
rate L/s	200	250 (300	350	400	450	500	550	600
3.0	102	96	92	89	86	84	83	81	80
3.5	106	100	95	92	89	87	85	83	82
4.0	110	103	98	95	92	89	87	86	84
4.5	115	107	102	98	94	92	90	88	86
5.0	119	110	105	100	97	94	92	90	88
5.5	122	114	108	103	99	96	94	92	90
6.0	126	117 (110	106	102	98	96	94	92
6.5	130	120	113	108	104	101	98	96	94
7.0	133	123	116	110	106	103	100	97	95
7.5	137	126	119	113	108	105	102	99	97
8.0	140	129	121	115	110	107	103	101	98
8.5	143	132	124	117	113	109	105	102	100
9.0	147	135	126	120	115	110	107	104	102
9.5	150	137	129	122	117	112	109	106	103
10.0	153	140	131	124	119	114	110	107	105
10.5	156	143	133	126	120	116	112	109	106
11.0	159	145	136	128	122	118	114	110	108
11.5	162	148	138	130	124	119	115	112	109
12.0	165	150	140	132	126	121	117	113	110
12.5	168	153	142	134	128	123	119	115	112
13.0	171	155	144	136	130	124	120	116	113
13.5	174	158	147	138	131	126	122	118	115
14.0	176	160	149	140	133	128	123	119	116
14.5	179	163	151	142	135	129	125	121	117
15.0	182	165	153	144	137	131	126	122	119
15.5	184	167	155	146	138	132	128	123	120
16.0	187	170	157	148	140	134	129	125	121

Minimum UPSTREAM box gutter depth (mm) for **1 in 100*** slope

* 1:100 slope equates to **10mm per m** increasing depth over the length of the gutter

Example

300mm wide box gutter Flow rate = 6.0 L/s

=> Adopt 110mm UPSTEAM depth

Design flow	Example Box gutter width (mm)								
rate L/s	200	250 (300	350	400	450	500	550	600
3.0	93	88	85	83	81	79	78	77	76
3.5	96	91	88	85	83	81	80	78	77
4.0	100	94	90	87	85	83	82	80	79
4.5	103	97	93	90	87	85	83	82	81
5.0	106	100	95	92	89	87	85	83	82
5.5	109	102	97	94	91	89	87	85	84
6.0	112	105(100	96	93	90	88	86	85
6.5	115	107	102	98	95	92	90	88	86
7.0	118	110	104	100	96	94	91	89	88
7.5	120	112	106	102	98	95	93	91	89
8.0	123	114	108	103	100	97	94	92	90
8.5	126	117	110	105	101	98	96	93	92
9.0	128	119	112	107	103	100	97	95	93
9.5	131	121	114	109	105	101	98	96	94
10.0	133	123	116	110	106	103	100	97	95
10.5	136	125	118	112	108	104	101	98	96
11.0	138	127	119	114	109	105	102	100	97
11.5	140	129	121	115	111	107	104	101	99
12.0	143	131	123	117	112	108	105	102	100
12.5	145	133	125	118	113	109	106	103	101
13.0	147	135	126	120	115	111	107	104	102
13.5	149	137	128	122	116	112	108	105	103
14.0	152	139	130	123	118	113	110	107	104
14.5	154	141	131	125	119	115	111	108	105
15.0	156	143	133	126	120	116	112	109	106
15.5	158	144	135	127	122	117	113	110	107
16.0	160	146	136	129	123	118	114	111	108

Minimum UPSTREAM box gutter depth (mm) for ${f 1}$ in ${f 40}^*$ slope

Example

300mm wide box gutter Flow rate = 6.0 L/s

=> Adopt 100mm UPSTEAM depth

^{* 1:40} slope equates to 25mm per m increasing depth over length of the gutter

Appendix G

Aerial downpipe design chart

Design chart for aerial downpipes

Clana	Pipe diameter									
Slope	90mm	100mm	150mm	225mm						
1 in 200	4.14	5.49	16.2	47.5						
1 in 190	4.26	5.65	16.6	48.9						
1 in 180	4.39	5.82	17.1	50.3						
1 in 170	4.53	6.00	17.7	51.9						
1 in 160	4.68	6.21	18.3	53.7						
1 in 150	4.85	6.43	18.9	55.6						
1 in 140	5.04	6.68	19.6	57.7						
1 in 130	5.25	6.96	20.5	60.1						
1 in 120	5.49	7.27	21.4	62.7						
1 in 110	5.76	7.63	22.4	65.7						
1 in 100	6.07	8.04	23.6	69.2						
1 in 90	6.43	8.52	25.0	73.3						
1 in 80	6.86	9.09	26.7	78.0						
1 in 70	7.38	9.77	28.7	83.9						
1 in 60	8.03	10.6	31.2	91.1						
1 in 50	8.87	11.7	34.4	100.4						

Maximum flow rates* (L/s)

^{*} Based on a standard Colebrook-White calculator